

Assignment 2 Building Modelling and Simulation

Building energy and environmental performance assessment – Case study

Brett Munckton – 2 May 2021

*I declare that in submitting all work for this assessment I have read, understood and agree to the content and expectations of the Assessment Declaration.

Table of Contents

1.	Executive Summary	3
2.	Introduction	3
3.	Literature Review	4
4.	Methodology	4
4.1	Banksia house	5
4.2	BCA compliant house	6
4.3	Banksia house – adaptations for future climate	7
5.	Results	9
5.1	Banksia house and BCA house	9
5.2	Banksia house future climate model 1 – increase shading	12
5.3	Banksia house future climate model 2 – decrease glazing	12
5.4	Banksia house future climate model 3 – improved glazing	13
5.5	Banksia house future climate combined modifications	14
5.6	Results compared	15
6	Discussion	18
7	Conclusion	19
Refe	erences	20

Appendix A: Screenshots, Inputs and Outputs	22
A1. Attributes common to all models	22
A2. Banksia house	34
A3. BCA house	43
A4. Banksia house future climate model 1 (increased shading)	52
A5. Banksia house future climate model 2 (decreased glazing)	54
A6. Banksia house future climate model 3 (improved glazing)	56
A7. Banksia house combined future climate modifications	58

Cover Images: IESVE models of the Banksia house and BCA compliant house

1. Executive Summary

Building modelling software was used to identify optimal home design and appropriate modifications to improve performance in a future anticipated warmer climate in Melbourne, Australia. The design for place 8.1 Star NatHERS Banksia house was modelled for Melbourne in Integrated Environmental Solutions Virtual Environment (IESVE) including the recommendations for its climate zone (DISER 2020). The home was then modified to create the Building Code of Australia (BCA) house model, that only complied with the elemental provisions of the National Construction Code 2019. The Banksia house performed significantly better than the BCA compliant version when energy performance simulations were performed utilising NatHERS protocols, in both the current (historically derived) and a predicted future warmer climate of 2050. Modifications to the Banksia house were then tested to improve its performance based on the future climate scenario.

The simulation results found that by reducing glazed areas, improving glazing performance and increasing shading, the annual thermal load of the Banksia house in the future climate could be reduced by 15 per cent. The modifications for the future climate however caused a 21 per cent increase in annual thermal load in the current climate. This indicates that design modifications for the future climate must be chosen with care to limit any adverse impacts in the current climate. The results demonstrate to achieve optimal outcomes, buildings may need to be modified over time as the climate changes. Designing buildings to be adaptable would increase the ease of these modifications. Table 1 provides a summary of the simulation results.

Scenario	Heating load (MWh / annum)	Cooling load (MWh / annum)	Combined thermal load (MWh / annum)
Banksia house current climate	6.28	1.97	8.25
BCA house current climate	11.81	2.62	14.43
Banksia house future climate	1.92	8.05	9.97
BCA house future climate	4.66	8.78	13.44
Banksia house future climate with all modifications	4.21	4.28	8.49
Banksia house current climate with all modifications	0.54	9.94	10.48

Table 1: Simulation results for generated models

2. Introduction

In 2019 the Victorian Department of Environment Land Water and Planning (DELWP 2019) released a climate science report that confirmed Victoria's climate is warming due to climate change. The report outlines that the average temperature across the state has warmed by 1°C since 1910. It forecasts that by 2050, the average annual Victorian temperature is anticipated to increase by up to an additional 2.4°C, with double the number of very hot days under a high emissions scenario. It predicts that Melbourne's climate could be more like Wangaratta's climate in central Victoria due to this. Homes in Wangaratta and Melbourne are currently required to be designed differently under the NatHERS system due to their differing climate zones and the impact of a changing climate is not assessed under the current system (DOE 2013; O'Leary 2016). Upadhyay (2018) outlines that modern building design often uses climate modifying technologies and has limited consideration of local climate constraints yet alone future climatic changes. As the lifespan of new homes can be estimated at 50 years it is important that their design considers the changing climate to ensure they can operate effectively in the future (Aijazi & Brager 2018; Upadhyay, Munsami & Smith 2019).

To determine the most suitable design for a future climate, the 8.1 star NatHERS rated Banksia house was modelled in Integrated Environmental Solutions Virtual Environment (IESVE) modelling software. The Banksia house is an energy efficient home design that was developed by the Australian Government to encourage sustainable construction (DISER 2020). The design was then modified to create the BCA house, that just met the minimum deemed to satisfy elemental provisions the National Construction Code 2019. The modelling of internal gains, space conditioning, air leakage and ventilation was undertaken following NatHERS protocols. Simulations were run for both homes using climate data based on current climate and predicted 2050 climate under the highest emissions scenario for Moorabbin in Melbourne which confirmed the better performance of the Banksia house in both climates. Due to the superior performance of the Banksia house, it was modified to determine beneficial changes to improve performance in a future climate, based on alterations suggested in relevant literature.

3. Literature Review

A literature review took place to understand what design strategies would be suitable to maximise housing performance in a future climate. This was required to inform design modifications to the Banksia house to increase its climate resilience. It was challenging to locate research based specifically on adaptations for Melbourne's climate zone, so broader literature needed to be reviewed. The literature was generally in agreement that reducing building heat gain was critical to improve performance in the anticipated future climate. Upadhyay, Munsami and Smith (2019) provided this recommendation for Western Sydney, whilst Tetty, Dodoo & Gustavsson (2017) provided a similar recommendation for multi- storey residential buildings in Sweden. Tetty, Dodoo & Gustavsson (2017) identified that improving window U-values, reducing heat gain through windows, reducing window area, and incorporating window shading improved performance in a future modelled climate.

Shen et al. (2019a) looked at adaptations to design for future homes in three different climate zones in Europe, in each zone the importance of managing glazing to external wall ratio was highlighted. Shen et al. (2019b) found that a key opportunity for climate change adaptation was improving building thermal envelope. Kosir (2019) outlines the increased importance of window shading for temperate climates to reduce solar heat gain, the future greater importance of heat exclusion, and the diminishing importance of heat admission. Smith (2010) identified that the traditional focus in building design in the UK has been on retaining warmth, and that there will need to be a greater focus on excluding heat in the future. The general focus of heat exclusion through initiatives such as envelope improvement, shading, and window size reduction are relevant for the Banksia house.

4. Methodology

Two models were developed and modifications to the Banksia house were implemented and tested for the future climate. Whilst the thermal elements and design attributes changed across the different models, internal gains, air conditioning, ventilation and air leakage were programmed into the models consistently to follow NatHERS protocols. Table 2 provides a summary of these inputs. For simplicity, a skylight shown on some design for place plans in the front entry was not modelled in any option, details about its thermal attributes were not available (DISER 2020). Solar absorptance values were generally not adjusted in IESVE so the defaults for the selected materials were used. The roof colour for the BCA compliant house is an exception, which needed to be considered to determine the insulation level required under building regulations. All models included a central ducted heat pump heating cooling system of standard efficiency. A review of suppliers including Australian Climate Systems (2021), Coldflow (2021) and Maroondah Heating and Cooling (2021) identified these systems are becoming more common in Melbourne and keeping this element consistent kept the models comparable. Climate data for the current climate from the Department of Environment and Water Resources (2006) and future climate from Exemplary Energy Partners (2019) was applied to the models for the simulations. Appendix A contains screenshots of inputs into the software for all models.

Table 2: Internal gains, conditioning, ventilation and air leakage of modelled dwellings

ltem	Values
Air exchanges	0.6/hr as per NCC V2.6.2.2(b)(ii) reference building requirements (ABCB 2019).
Internal gains	Applied for kitchen/living area and bedrooms only. Variable volumes as per appendix B.1 of NatHERS Software Accreditation Protocol (NatHERS National Administrator 2012). Maximum 1610W kitchen living and 300W combined bedrooms sensible. Maximum 750W kitchen living and 100W combined bedrooms latent.
Conditioning Bedrooms	An average calculated heating set point of 16.8°C and a cooling set point of 24°C from 4pm to 9am, including walk in robe and ensuite for main bedroom (DOEE 2019; Issacs & Graham 2020; NatHERS National Administrator 2012).
Conditioning Living areas	A heating set point of 20°C and a cooling set point of 24 °C from 7am to 12am, including entry hallway (DOEE 2019; Issacs & Graham 2020; NatHERS National Administrator 2012).
Opening of windows and doors	For external openings formula used (ta>24) & (ta>(to-4)). Windows and doors to open when the temperature inside (ta) is greater than 24, and the temperature inside is greater that the temperature outside minus 4 degrees (Baharun, Ooi & Chen 2009). Internal doors open continuously as NatHERS assessor handbook outlines these doors are assumed to be opened and closed to allow the dwelling to be naturally ventilated (DOEE 2019).

4.1 Banksia house

To model the Banksia house, its floor plan was inserted into IESVE and used to draw the general dimensions of the dwelling. The area was subdivided into separate rooms, where rooms had unique thermal or conditioning characteristics. The lean-to roof was added, and a raked ceiling created in the living area and main bedroom. The model was designed to match the Banksia house design options for Melbourne, which have been developed in consideration of its climate (DISER 2020). Table 3 summarises the thermal properties inputted into the model as per the assessment brief and Banksia house design details (DISER 2020; Willand 2021). The slab contains a 300mm waffle pod, an 18.9mm layer of polystyrene has been added to the model to replicate the R 0.63 improvement this provides (CSIRO 2018). Figure 1 shows the axonometric view of the Banksia house.

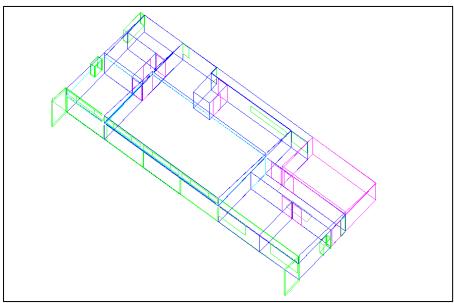


Figure 1: Axonometric view of modelled Banksia house

Element	Total R value (m ² K/W)	Materials (outside to inside)
External walls North	2.86	Lightweight cladding, foil membrane, R2.5 batt insulation, plasterboard.
External walls South, East and West	3.03	Lightweight cladding, membrane, R2.5 batt insulation, brickwork and plasterboard.
Roof / Ceiling	5.46	Sheet metal, insulating blanket R 1.3, insulation batts R 4.0, plasterboard
Internal Walls Masonry	0.18	Brickwork
Garage / attic walls	2.63	2 plasterboards on either side of a 90mm insulated cavity.
Internal Walls	.30	2 plasterboards on either side of a 90mm cavity.
Floor burnished concrete Floor tiled (wet areas) Floor carpet (walk in robe)	0.69 0.70 0.77	Clay, polystyrene, concrete Clay, polystyrene, concrete, tile Clay, polystyrene, concrete, carpet
Windows and sliding doors	0.61	Double glazed, 6mm glass, timber frame
Internal doors	0.24	45mm timber
Front door Laundry door	0.24 0.29	45mm timber 50% 45mm timber & 50% double glazed window

4.2 BCA compliant house

To transform the Banksia house into a BCA compliant house, its features were adjusted to be similar to a standard house and its thermal construction properties were adjusted to only meet the minimum deemed to satisfy compliance requirements under the BCA. Figure 2 shows an axonometric view of the BCA compliant house.

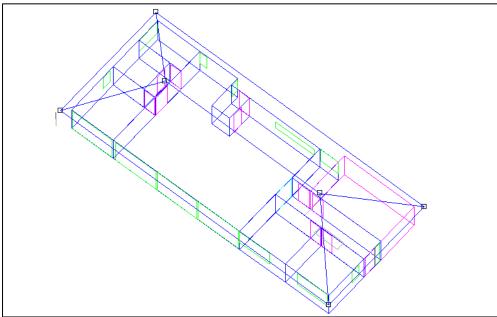


Figure 2: Axonometric view of modelled BCA compliant house

Table 4 outlines the thermal properties of the BCA compliant house that were utilised and details of why they were applied. A roof colour with a solar absorptance of 0.3 was applied, as this needed to be considered to determine the roof's insulation requirements under the BCA. A timber floor was applied to most of the home, as this is more common in standard homes than the Banksia house's burnished concrete.

Element	Total R value (m²K/W)	Materials (outside to inside)	Reasoning
External walls	2.80	Plaster, brickwork, membrane, insulation and plasterboard.	Materials as per Wiland (2021). R-value as per clause 3.12.1.4(b)(ii) of vol. 2 of the National Construction Code in (ABCB 2019)
Roof / Ceiling	4.6	Concrete tiles (solar absorptance 0.3), insulating blanket R 1.6, insulation batts R 2.9, plasterboard.	Materials as per Wiland (2021). R-value as per Table 3.12.1.1f in vol. 2 of the National Construction Code (ABCB 2019).
Internal Walls	0.30	2 plasterboards on either side of a 90mm cavity	As per Willand (2021).
Floor timber Floor tiled (wet areas) Floor carpet (walk in robe)	0.23 0.15 0.23	Clay, concrete, timber Clay, concrete, tile Clay, concrete, carpet	A floating timber floor is more common in standard homes than exposed concrete. Materials as per Wiland (2021).
Windows and sliding doors	0.16	Single glazed, 6mm clear glass, aluminium frame	As per Wiland (2021).
Internal doors	0.24	45mm timber	As per Wiland (2021).
Front door Laundry door	0.24 0.20	45mm timber 50% 45mm timber, 50% window	Front door kept consistent with internal doors for simplicity. Laundry door resistance reduced due to single glazed window.

 Table 4: BCA compliant house thermal properties

4.3 Banksia house – adaptations for future climate

As the Banksia house was more efficient in both the climate scenarios, it was selected for modifications in the future climate to determine what changes were advantageous. Based on the reviewed literature, modifications were applied and tested. These were applied separately so their independent results could be understood. All adaptations were then combined, and results simulated to understand how they performed together.

4.3.1 Banksia house future climate model 1 – increase shading

The modelled Banksia house includes a large shade along the north of the dwelling measuring 1.63 metres in width, and smaller shades around the east and west windows measuring 400mm in width. The first modification that was implemented involved increasing shading elements on the north, east and west to provide additional protection from solar heat gain in a future climate. The shading to the east and west bedroom and ensuite windows was increased from 400mm to 600mm and the

simulation was run. The larger northern shading was then extended to varying extents and simulations were run to identify the most advantageous results. Figure 3 shows the shading width being adjusted as part of this process.

Divide Sp Edit Vertices	ace Sep Surface Fill Surf	arate Composite face Merge S		
X (m)	Y (m)	Z (m)		
22.852	00 -3.138100	0.000000	1 2	
22.752		0.000000	3	
22.852		3.599000 3.804900	5	
22.752	00 -1.638100	3.804900	7	
		3.599000	8	
Vertex shift		0.00000	-	\sim / /
0.000000	-1.500000	0.000000		
	Move Vertices	:		
🕀 💋 Wal				
🗎 🖗 Wal				¹ / ₂
🖶 🖗 Wal				~2

Figure 3: Shading adjustments using the edit space function

4.3.2 Banksia house future climate model 2 – decrease glazing

The second modification that was implemented involved reducing the extent of glazing. Two of the three large north facing sliding doors were removed and replaced with a partially operable window 16 per cent of their combined size. The west facing window next to the front door was removed, and the window to the ensuite was reduced by 66 per cent. Instead of the ensuite window being partly fixed and partially operable, due to the reduced size the entire window was made operable to minimise impacts on natural ventilation. The size of the shading element to the ensuite window was also reduced to match the window. The northern clerestory windows were also reduced by 50 per cent by removing the fixed sections. Figure 4 illustrates the adjustments applied to the window extent, which equate to an overall glazing reduction of 34 per cent, and this quantified in Table 5.

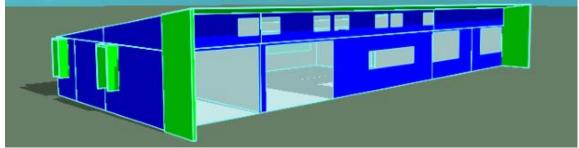


Figure 4: Banksia house reduced glazing for future climate

Window/s	Original extent	Reduced extent
Ensuite window	2.87m ²	0.95m ²
Northern sliding doors	33.98m ²	19.74m ²
Window next to front door	1.104m ²	0m²
Northern clerestory windows	8.54m ²	4.27m ²
Other windows	17.17m ²	17.17m ²
Total	63.66m ²	42.13m ²

Table 5: Window reductions

4.3.3 Banksia house future climate model 3 - improve glazing

The third modification that was implemented involved improving and modifying the glazing for better performance in a warmer climate. This involved dropping the shading co-efficient of the windows from 0.60 to 0.31 and adding another layer of glazing to provide triple glazed windows improving the U-value from 2.0 to 1.7.

5. Results

A range or results were generated using simulation software. The focus of the analysis was looking at heating and cooling loads including annual consumption and peak loads. The results were also analysed in terms of energy intensity (kWh/m²/annum). Internal room temperatures both with and without conditioning were also examined in the main bedroom and main living and kitchen area. These two areas were selected as they are representative of the two different conditioned zones within the dwelling. Energy intensity was based on a $179m^2$ floor area, which is the size of the floor area in the IESVE model excluding the garage. This is only a slight variance from the $172m^2$ size shown on the design for place plans, which may have been caused by a minor discrepancy in the scale applied in the modelling software (DISER 2020). Screenshots of results from all models are included in Appendix A.

5.1 Banksia house and BCA house

Table 6 shows a summary of the key results for the Banksia house and BCA house simulations in the current climate, based on the models where conditioning is applied. These results indicate the Banksia house has an annual thermal load that is 43 per cent less than the BCA house, demonstrating its more efficient performance in the current climate.

Metric	Banksia house current climate	BCA house current climate
Annual energy intensity (kWh/m²)	191	208
Total system energy (MWh/annum)	34.11	37.23
Heating loads (MWh/annum)	6.28	11.8
Cooling loads (MWh/annum)	1.97	2.6
Total heating and cooling loads (MWh/annum)	8.25	14.4
Peak heating load	21 Jul – 7:30 - 9.3 kW	22 Jun – 10:30 - 10.9kW
Peak cooling load	25 Jan - 16:30 – 22.5 kW	7 Mar - 16:30 - 30.2kW
Minimum temperature main bedroom	24 Jul - 9:30 - 16.7°C	24 Jul - 9:30 - 16.2°C
Maximum temperature main bedroom	7 Mar - 14:30 - 41.1°C	7 Mar - 14:30 - 42.4°C
Average temperature main bedroom	20.1°C	19.6°C
Minimum temperature living area	21 Jul - 6:30 - 15.1°C	21 Jul - 6:30 - 13.7°C
Maximum temperature living area	3 Jan - 3:30 - 27.8°C	3 Jan - 3:30 - 28.0°C
Average temperature living area	20.6°C	20.1°C

Table 6: Results Banksia house and BCA house current climate

Table 7 shows a summary of the key results for the Banksia house and BCA house simulations in the current climate in free floating mode with no heating or cooling applied. This demonstrates the Banksia house has a higher minimum temperature and average internal temperatures, demonstrating its building envelope is more effective than the BCA house.

Metric	Banksia house current climate	BCA house current climate
Minimum temperature main bedroom	16 Jun - 7:30 - 10.4°C	21 Jul - 6:30 - 8.3℃
Maximum temperature main bedroom	7 Mar - 14:30 - 42.2°C	7 Mar - 14:30 - 42.4°C
Average temperature main bedroom	19.0°C	17.9°C
Minimum temperature living area	16 Jun - 7:30 - 10.4°C	21 Jul - 6:30 - 8.5°C
Maximum temperature living area	7 Mar - 14:30 -42.2°C	7 Mar - 14:30 - 42.3°C
Average temperature living area	18.9°C	17.9°C

Table 7: Energy simulation results – Banksia and BCA house in current climate free floating mode

Whilst these results confirm the Banksia house's optimal performance in the current climate, the future climate also needs to be considered. Simulation results of the Banksia house and BCA house in the future climate are shown in Table 8, which demonstrates that the Banksia house is still more efficient in the future climate, with a lower energy intensity and combined heating and cooling load.

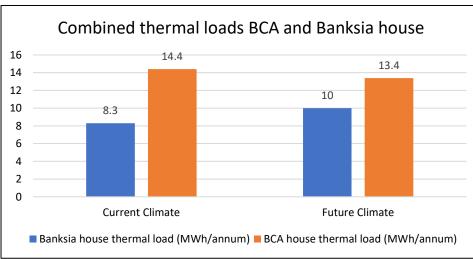

Metric	Banksia house future climate	BCA house future climate
Annual energy intensity (kWh/m²)	197	207
Total system energy (MWh/annum)	35.22	36.98
Heating loads (MWh/annum)	1.92	4.7
Cooling loads (MWh/annum)	8.05	8.8
Total heating and cooling loads (MWh/annum)	9.97	13.4
Peak heating load	16 Aug - 7:30 - 8.5kW	16 Aug - 7:30 - 10.1kW
Peak cooling load (kW)	19 Apr – 16:30 – 38.9kW	11 Jan - 14:30 - 37.0kW
Minimum temperature main bedroom	28 Jun - 9:30 - 16.8 °C	1 Jul - 9:30 - 16.4°C
Maximum temperature main bedroom	7 Mar - 15:30 - 44.3°C	7 Mar - 15:30 - 44.8°C
Average temperature main bedroom	21.9 °C	21.1°C
Minimum temperature living area	16 Aug - 6:30 - 15.6°C	16 Aug - 6:30 - 14.3°C
Maximum temperature living area	19 Dec - 4:30 - 28.4°C	9 Mar - 5:30 - 28.6°C
Average temperature living area	22.0°C	21.4°C

Table 8: Results Banksia house and BCA house future climate

Table 9 compares the Banksia house and BCA house in the future climate in free floating mode without heating and cooling applied. This demonstrates the Banksia house has a lower range of internal temperatures due to its improved fabric when compared to the BCA house. Figures 5 and 6 compare the thermal loads and energy intensity of the different models in the current and future climate.

Metric	Banksia house future climate	BCA house future climate	
Minimum temperature main bedroom	28 Jun - 8:30 - 12.6°C	16 Aug - 7:30 - 10.2 °C	
Maximum temperature main bedroom	7 Mar - 15:30 - 45.8°C	7 Mar - 15:30 - 46.0°C	
Average temperature main bedroom	21.9°C	20.9°C	
Minimum temperature living area	28 Jun - 7:30 - 12.5°C	16 Aug - 7:30 - 10.6 °C	
Maximum temperature living area	7 Mar - 15:30 - 45.8°C	7 Mar - 15:30 - 45.9°C	
Average temperature living area	21.9°C	21.0°C	

Table 9: Energy simulation results – BCA and Banksia house future climate free floating mode

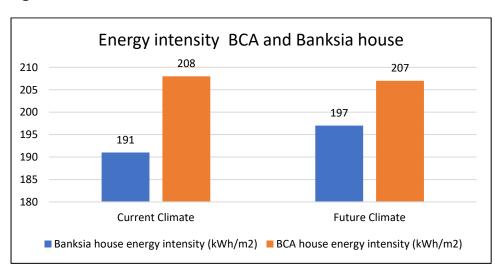


Figure 5: thermal loads of BCA and Banksia house in different climates

Figure 6: Energy intensity of BCA and Banksia house in different climates

The Banksia house saw a 17 per cent increase in its annual thermal load due to a changing climate, whilst the BCA house saw a 7 per cent reduction. In both cases cooling loads increased and heating loads decreased due to a warming climate. The results also show that overall energy and energy intensity, which includes all system and other ancillary energy, also increased for the Banksia house though reduced slightly for the BCA house in the future climate. The energy intensity values are linked to the efficiency of the heating and cooling system and other factors, whilst the thermal loads are based on the building envelope. The Banksia house still performed better than the BCA house in the future climate with a lower maximum temperature in free floating mode, lower energy intensity, and lower thermal loads. The BCA house only performed slightly better in relation to peak cooling demand. Due to the Banksia house's better performance in general, it was selected for modification for the future climate scenario.

5.2 Banksia house future climate model 1 - increase shading

It was found that extending the shading on the east and west windows from 400mm to 600mm, and extending the northern shading from 1.63 metres to 2.63 metres resulted in the greatest reduction in annual thermal load. The northern shading was tested at different dimensions, and load reductions stopped after extending the shade beyond 2.63 metres as increases in heating load began to exceed savings in cooling load. The results of the shading increase to 600mm on the east and west windows and 2.63 metres to the north are shown in Table 10, demonstrating that these changes could achieve a 5 per cent reduction in thermal demand in the modelled 2050 climate.

Metric	Banksia house conditioned	Banksia house free floating mode	
Annual energy intensity (kWh/m²)	195	N/A	
Total system energy (MWh/annum)	34.9	N/A	
Heating loads (MWh/annum)	2.41	N/A	
Cooling loads (MWh/annum)	7.07	N/A	
Total heating and cooling loads (MWh/annum)	9.48	N/A	
Peak heating load	16 Aug - 7:30 - 8.6kW	N/A	
Peak cooling load (kW)	19 April – 16:30 – 32.0kW	N/A	
Minimum temperature main bedroom	28 Jun – 9:30 - 16.7°C	28 Jun - 8:30 - 12.5°C	
Maximum temperature main bedroom	7 Mar – 15:30 - 44.2°C	7 Mar – 15:30 – 45.7°C	
Average temperature main bedroom	21.6°C	21.5°C	
Minimum temperature living area	16 Aug - 6:30 - 15.6°C	28 Jun - 7:30 - 12.4°C	
Maximum temperature living area	19 Dec - 4:30 - 28.4°C	7 Mar – 15:30 – 45.7°C	
Average temperature living area	21.7°C	21.5°C	

Table 10: Key results – model 1 Banksia house with increased shading

5.3 Banksia house future climate model 2 – decrease glazing

Results demonstrating the outcomes of reducing glazing to the north, east and west are shown in Table 11. This demonstrates that reducing the glazing extent in the future climate reduced annual thermal loads by 12 per cent, from 9.97 MWh per annum to 8.75 MWh per annum. The adjustment

of these windows reduced the heat gain of the house from solar exposure and increased its thermal resistance through replacing the windows with insulated walls. The changes also provide a slightly greater reduction in internal temperatures and peak cooling loads than those achieved in model 1.

Metric	Banksia house conditioned	Banksia house free floating mode
Annual energy intensity (kWh/m²)	193	N/A
Total system energy (MWh/annum)	34.54	N/A
Heating loads (MWh/annum)	2.55	N/A
Cooling loads (MWh/annum)	6.20	N/A
Total heating and cooling loads (MWh/annum)	8.75	N/A
Peak heating load	16 Aug - 7:30 - 7.93kW	N/A
Peak cooling load	19 Apr – 13:30 – 35.68kW	N/A
Minimum temperature main bedroom	28 Jun - 9:30 - 16.8°C	28 Jun - 7:30 - 12.5°C
Maximum temperature main bedroom	7 Mar – 15:30 – 44.3°C	7 Mar - 15:30 - 45.8°C
Average temperature main bedroom	21.7°C	21.5°C
Minimum temperature living area	16 Aug - 6:30 - 15.9°C	28 Jun - 7:30 - 12.5°C
Maximum temperature living area	26 Jan - 6:30 - 28.2°C	7 Mar - 15:30 - 45.6°C
Average temperature living area	21.6°C	21.2°C

Table 11: Results - model 2 Banksia house with reduced glazing

5.4 Banksia house future climate model 3 – improved glazing

Results demonstrating the outcomes of switching to triple glazing and reducing window shading coefficient from 0.6 to 0.31 are shown in Table 12. This demonstrates that combined these modifications led to a 10 per cent reduction in annual thermal loads, and in isolation the reductions were less significant.

Scenario	Heating Load (MWh/annum)	Cooling Load (MWh/annum)	Total Load (MWh / annum)
Unmodified banksia house	1.92	8.05	9.97
Reduced shading co-efficient only	3.58	5.8	9.38
Triple glazing only	1.68	8.06	9.74
Triple glazing and reduced shading co-efficient	3.35	5.67	9.02

Table 12: Key results – model 3 Banksia house with improved glazing

Table 13 shows a summary of results for model 3 of the Banksia house in the future climate with triple glazing and the reduced window shading co-efficient. The changes also dropped internal

temperatures and peak cooling loads. Improving glazing reduced the amount of heat entering the dwelling and the subsequent need for cooling.

Metric	Banksia house conditioned	Banksia house free floating mode
Annual energy intensity (kWh/m²)	194	N/A
Total system energy (MWh/annum)	34.7	N/A
Heating loads (MWh/annum)	3.35	N/A
Cooling loads (MWh/annum)	5.67	N/A
Total heating and cooling loads (MWh/annum)	9.02	N/A
Peak heating load	16 Aug - 7:30 - 8.43kW	N/A
Peak cooling load	19 Apr – 16:30 – 33.68kW	N/A
Minimum temperature main bedroom	28 Jun - 9:30 – 16.7°C	28 Jun - 8:30 - 11.95°C
Maximum temperature main bedroom	7 Mar - 15:30 - 44.2°C	7 Mar - 15:30 - 45.7°C
Average temperature main bedroom	21.1°C	20.8°C
Minimum temperature living area	16 Aug - 6:30 - 15.6°C	28 Jun - 7:30 - 11.9°C
Maximum temperature living area	26 Jan – 6:30 – 28.4°C	7 Mar - 15:30 - 45.7°C
Average temperature living area	21.4°C	20.8°C

Table 13: Results - model 3 Banksia house with improved glazing

5.5 Banksia house future climate combined modifications

Table 14 shows additional results for the Banksia house with combined modifications in the future climate. The combined modifications achieve a reduction in peak cooling load from 38.9kW to 26.7kW compared to the unmodified Banksia design in the future climate. The modifications saw average temperature in free floating mode drop from 21.9°C in the main bedroom and living room, to 20.1°C, and annual thermal load reduce by 15 per cent. This demonstrates the significant reduction of heat gain in the dwelling on average with the modifications in place. Figures 7 and 8 show the combined modifications to the dwelling including the larger shading elements and reduced glazing, and the impacts at different times of the year. These figures demonstrate the dwelling is still able to receive some solar heat gain in winter in July through the northern windows, though in March the sun is being blocked from the dwellings large northern windows by the larger shading element.

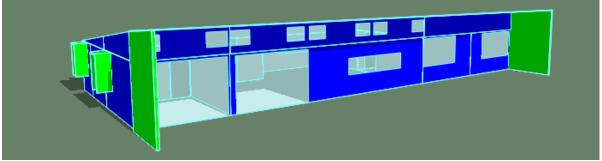


Figure 7: Combined modifications Banksia house July midday

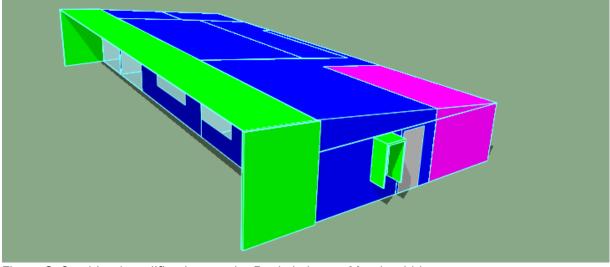


Figure 8: Combined modifications to the Banksia house March midday

Metric	Banksia house conditioned	Banksia house free floating mode
Annual energy intensity (kWh/m²)	192	N/A
Total system energy (MWh/annum)	34.3	N/A
Heating loads (MWh/annum)	4.21	N/A
Cooling loads (MWh/annum)	4.28	N/A
Total heating and cooling loads (MWh/annum)	8.49	N/A
Peak heating load	16 Aug - 7:30 - 7.93kW	N/A
Peak cooling load	24 Feb - 7:30 - 26.76kW	N/A
Minimum temperature main bedroom	28 Jun – 9:30 – 16.7°C	28 Jun - 8:30 - 11.9°C
Maximum temperature main bedroom	7 Mar – 15:30 - 44.2°C	7 Mar – 15:30 – 45.7°C
Average temperature main bedroom	20.8°C	20.1°C
Minimum temperature living area	16 Aug - 6:30 - 15.9°C	28 Jun - 7:30 - 11.9°C
Maximum temperature living area	26 Jan - 6:30 - 28.2°C	7 Mar - 15:30 - 45.6°C
Average temperature living area	21.2°C	20.1°C

Table 14: Results combined modifications to Banksia house

5.6 Results compared

The results demonstrate the impact of climate change on thermal loads, energy use and temperature. Figure 9 shows temperatures in unconditioned simulations at the time of peak internal temperature on March 7. This shows the significant increase in internal and external temperature in the future climate. Also demonstrated is that the modified Banksia house performs slightly better than the unmodified version and BCA house when facing this extreme heat. With an outside air temperature of 46°C however, all future dwellings struggle due to the intensity of the heat.

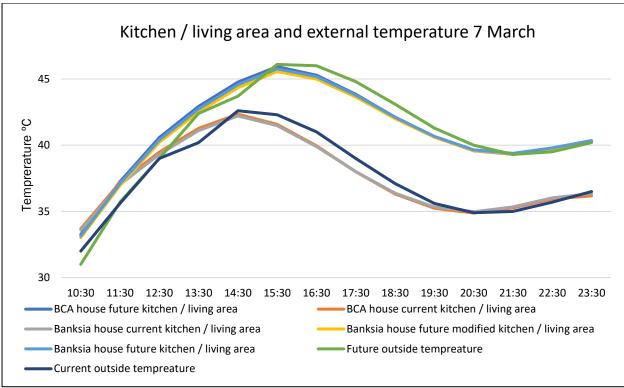


Figure 9: Peak temperatures kitchen /living area and outside (without conditioning)

Figures 10 and 11 shows the results of the different and combined modifications to the Banksia house in a future climate scenario. Reducing glazing achieved the greatest reduction in thermal demand in the future climate as an independent action, improving glazing was the second most effective option and increasing shading had the smallest benefit. These results highlight the importance of appropriate wall to window ratios especially in consideration of a warming climate. The combined modifications provided the largest reduction in thermal demand, though reducing glazing could provide most of the reductions in isolation. Energy intensity reduced with the changes; however, the reduction was limited. There are other factors that influence energy intensity in addition to thermal load that this reflects.

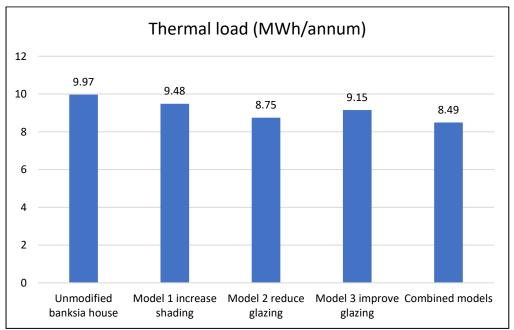


Figure 10: Thermal load Banksia house with various modifications in future climate

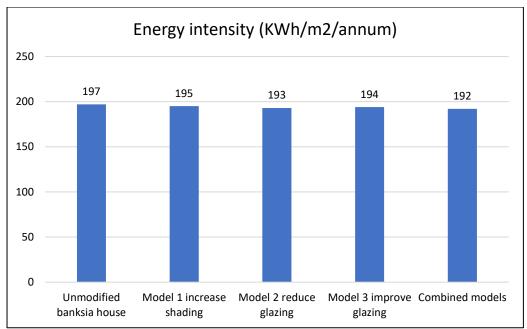


Figure 11: Energy intensity Banksia house with various modifications in future climate

The modified Banksia house was also simulated in the current climate to assess what impact the implemented modifications would have at the present time. The results are shown in Table 15 and Figure 12. The results demonstrate that the modifications provide a 15 per cent reduction in annual thermal load in the future climate, though increase annual thermal load by 21 per cent in the current climate. This is due to the modifications rejecting of beneficial heat in winter in the current cooler climate, significantly increasing heating demand.

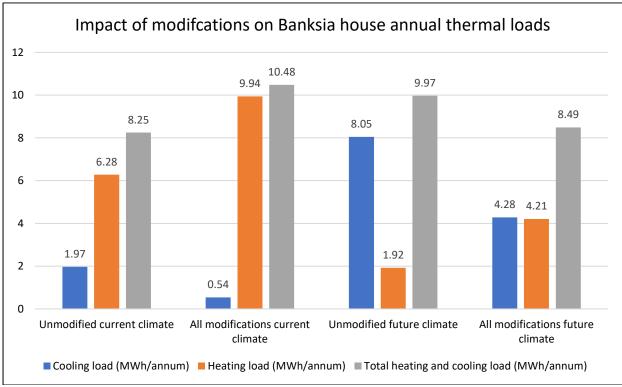


Figure 12: Thermal load impact of modifications to the Banksia house

Scenario	Heating Load (MWh/annum)	Cooling Load (MWh/annum)	Total Heating and Cooling load (MWh / annum)	Annual energy intensity (kWh/m²)
Unmodified current climate	6.28	1.97	8.25	191
All modifications current climate	9.94	0.54	10.48	197
Unmodified future climate	1.92	8.05	9.97	197
All modifications future climate	4.21	4.28	8.49	192

Table 15: Key results - combined modifications to the Banksia house

Considering the significant reductions that were achieved by reducing glazing alone, model 2 was also simulated in the current climate. This found that the reduction in glazing in model 2 only caused an increase in thermal load from 8.24 MWh/annum to 8.64 MWh/annum. If design adaptation is limited to reducing glazing, this would limit impacts on current performance whilst also having the greatest benefit of the three modelled options for performance in a future warmer climate.

6. Discussion

The suitability of utilising energy modelling software to compare building designs and measure the impact of design modifications has been demonstrated. Manually calculating the impact of climate on dwelling design would not be practical. The use of software allows these calculations to be completed efficiently, assisting designers to improve buildings and ensure they are optimised for their climate zone. Modelling software allowed various adjustments to be modelled to the Banksia dwelling in the future climate to reject heat and their impacts to be assessed. This determined that the greatest improvement could be obtained by combining the modifications, whilst a reduction in glazed area provided the greatest improvement in isolation.

The reduction in glazing provided the greatest improvement as windows have much less thermal resistance than insulated walls, and as they are transparent, they can also allow solar radiation to penetrate buildings. Windows are however important to allow ventilation, natural light and solar heat gain in winter. Due to a warming climate, heat gain in winter becomes less important, therefore a reduction in window extent can improve performance. Whilst widows and associated natural light provide a variety of benefits, to increase occupant thermal comfort in a future warmer environment their extent may need to be reduced. The impact of glazing reductions on natural light and views needs to be considered as part of the design process.

Whilst the improved Banksia house reduced energy intensity and thermal loads in the future climate, the modification increased these in the current climate. Buildings should not be designed to focus on the future climate only, as this could make them ineffective in the current climate. Both future and current climates need to be considered to enable optimum designs to be achieved. Some future climate design adaptations may have less of an impact on current performance. In the case of the Banksia house reducing glazing provided significant benefits in the future climate and limited adverse thermal and energy impacts in the current climate.

Further modelling of the Banksia house to identify the optimum design for both climates, utilising different extents of the modifications developed for the future climate is recommended. This may demonstrate different levels of reduced glazing, shading increase and glazing improvement may provide a balanced outcome that achieves reasonable results in both climates. Planning for future adaptions in the current design should also be considered, such as window tinting to increase heat rejection and shading that can be easily extended. Dwellings designed to be easily modified as the climate changes would enable them to operate effectively in the current climate and easily adjust to

the future climate. Policy makers may consider ways to require future climate projections to influence building design and adaptability to improve outcomes as the climate changes.

7. Conclusion

Designing buildings with a reasonable level of protection from heat is important to increase resilience from climate change, and it is critical that climate change impacts are considered as part of the design process. Focus should not be limited to designing for the current or future climate however, as the optimal design solutions for each can lead to adverse outcomes in the other. The importance of designs considering both future and current climate has been highlighted. Designing buildings to be adapted as the climate changes could further improve outcomes.

References

Australian Building Codes Board (ABCB) 2019, *Building Code of Australia volume 2*, Australian Building Codes Board, Canberra.

Australian Climate Systems 2021, *Whole of home heating and air conditioning,* Australian Climate Systems, viewed 26 April 2021 <<u>https://www.austclimate.com.au/heating/reverse-cycle-heating/?gclid=CjOKCQjwppSEBhCGARIsANIs4p5FVc5Z3CP2LwTZs_yrh-gtCmc_ZYabbqORRIoFy193wiefy09IpssaAqkPEALw_wcB</u>>.

Aijazi, A.N & Brager, G.S 2018, 'Understanding climate change impacts on building energy use', *ASHRAE Journal*, October 2018, pp. 24-32.

Baharun, A, Ooi, KB & Chen, D 2009, 'Thermal comfort and occupant behaviors in Accurate, a software assessing the thermal performance of residential buildings in Australia', conference paper presented to EERB-BEPH, China, 27 - 29 May.

Coldflow 2021, Ducted air conditioning Melbourne, Coldflow, viewed 26 April 2021 <<u>https://www.coldflow.net.au/ducted-refrigerated-air-conditioning/</u>>.

Commonwealth Scientific and Industrial Research Organisation (CSIRO) 2018, *Chenath* v3.21 *update*, CSIRO, viewed 22 April 2021, <<u>https://ahd.csiro.au/chenath-v3-21-update/</u>>.

Department of Industry, Science, Energy and Resources (DISER) 2020, *Design for place*, DISER, viewed 22 April 2021 <<u>https://www.yourhome.gov.au/house-designs</u>>.

Department of Environment, Land, Water and Planning (DELWP) 2019, Victoria's climate science report 2019, DELWP, viewed 22 April 2021,

<<u>https://www.climatechange.vic.gov.au/__data/assets/pdf_file/0029/442964/Victorias-Climate-Science-Report-2019.pdf</u>>.

Department of Environment (DOE) 2013, *Climate zone map nationwide home energy rating scheme*, Department of Environment, viewed 22 April 2021 <<u>https://www.nathers.gov.au/themes/custom/govcms8_uikit_starter/climate-map/index.html</u>>.

Department of the Environment and Energy (DOEE) 2019, *NatHERS* assessor handbook, Department of the Environment and Energy, Canberra, viewed 26 April 2021 <<u>https://www.nathers.gov.au/sites/default/files/AssessorHandbook_All_chapters_PDF_Bookmarke</u> <u>d_v1.1.pdf</u>>.

Department of Environment and Water Resources 2006, *Weather data - VIC Moorabbin Airport* 948700 (*RMY*), Climate data file, Energy Plus, viewed 26 April 2021 <<u>https://energyplus.net/weather-</u> location/southwest_pacific_wmo_region_5/AUS//AUS_VIC.Moorabbin.Airport.948700_RMY>.

Exemplary Energy Partners 2019, *Moorabbin EFMY* 2050 *high emission warmest likely climate*, Ersatz Future Meteorological Years climate data, data file, Exemplary Energy Partners.

Isaacs, T & Graham, M 2020, *FirstRate5 user manual*, Sustainability Victoria, Melbourne.

Kosir, M 2019, Climate adaptability of buildings: Bioclimatic design in the light of climate change, Springer, Cham, Switzerland.

O'Leary, T.R 2016, 'Industry adaption to NatHERs 6 star energy regulations and energy performance disclosure models for housing', PhD thesis, Melbourne University, Melbourne.

Maroondah Heating and Cooling 2021, *Reverse cycle air conditioning Melbourne*, viewed 26 April 2021, <<u>https://www.maroondahair.com.au/heating/reverse-cycle-ducted-air-conditioning/</u>>.

NatHERS National Administrator 2012, *NatHERS Software accreditation protocol*, Department of Climate Change and Energy Efficiency, viewed 22 April 2021, <<u>https://www.nathers.gov.au/sites/default/files/2019-</u>10/NatHERS%20Software%20Accreditation%20Protocol-June%202012.pdf>.

Shen, J, Copertaro, B, Zhang, X, Koke, J, Kaufmann, P & Krause, S 2019a, 'Exploring the potential of climate-adaptive container building design under future climates scenarios in three different climate zones', *Sustainability*, vol. 12, no. 1.

Shen, J, Copertaro, B, Sangelantoni, L, Zgang, X, Suo, H, Guan, X 2019b, 'An early-stage analysis of climate-adaptive designs for multi-family buildings under future climate scenario: Case studies in Rome, Italy and Stockholm, Sweden', *Journal of Building Engineering*, vol. 7.

Smith, P.F 2010, Building for a changing climate: The challenge for construction, planning and energy, Earthscan, Oxon, UK.

Tettey, U.Y.A, Doodoo, A, Gustavsson, L 2017, 'Energy use implications of different design strategies for multi-storey residential buildings under future climates', *Energy*, vol. 138, pp. 846 – 860.

Upadhyay, A.R 2018, 'Climate information for building designers: a graphical approach', *Architectural Science Review*, vol. 61, no. 1-2, pp. 58-67.

Upadhyay, A.R, Munsami, K & Smith, C.L 2019, *RP1041: Improving the thermal performance of dwellings for carbon positive and healthy homes,* Cooperative Research Centre for Low Carbon Living, viewed 22 April 2021, <<u>https://apo.org.au/sites/default/files/resource-files/2019-06/apo-nid244021.pdf</u>>.

Willand, N 2021, 'Assessment 2. Report: Building energy and environmental performance assessment – Case study', assessment brief, BUSM 4460, RMIT University, Melbourne.

Appendix A: Screenshots, Inputs and Outputs

This appendix includes screenshots, inputs and outputs of models used for the analysis.

A1. Attributes common to all models

Internal gains, air leakage, ventilation, heating and cooling profiles and systems remained consistent across all models. Some screenshots in this section may include text referring to the Banksia house, this is because the attributes were first created for the Banksia house then also applied to the BCA house. Figure A1 shows the heating system attributes, and Figure A2 the cooling system.

Name	e: Banksia 8.1 stars	Banksia 8.1 stars				
UK NCM type	NCM type: Central heating using air distribution					
Heating (Cooling Hot water	Solar heating Aux energy Air supply Cost Control				
Generato	or:	Meter Electricity: Meter 1	~			
		Is it a heat pump*?	\checkmark			
		Seasonal efficiency	2.0000			
		Delivery efficiency	1.0669			
		SCoP kW/kW	2.1339			
		Generator size kW	0.00			
Heat rec	overy:	Vent. heat recovery effectiveness	0.0000			
	Vent. heat recovery return air temp °C					
CH(C)P: Is this heat source used in conjunction with CHP?						
What ranking does this heat source have after the CH(C)P plant		ant? 1				

Figure A1: Specifications of heating system used in all models

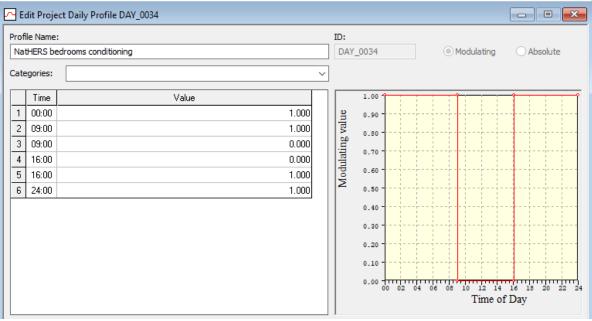

Name: E	Name: Banksia 8.1 stars				
UK NCM type: Central heating using air distribution					
Heating Coolir	9 Hot water Solar heating Aux energy Air supply Cost Control				
Generator:	Cooling/ventilation mechanism Air conditioning	~			
	Meter Electricity: Meter 1	~			
	Nominal EER* kW/kW	3.1250			
	Seasonal EER kW/kW	2.5000			
	Delivery efficiency	1.0800			
	SSEER kW/kW	2.0000			
	Generator size kW	0.00			
	Absorption chiller				
Operation:	Operation: Changeover mixed mode free cooling* Not a CMM system				
Heat rejection	Pump & fan power (% of rejected heat)	10.0			

Figure A2: Specifications of cooling system used in all models

		ject Daily Profile DAY_0028					
	Ealt Pro	Ject Daily Profile DAY_0028					
Pro	file Nan	e:	_	ID:			
N	atHERS	Living Area Conditioning		DAY	(_0028	Modulating	Absolute
Cat	tegories	:	·				
	Time	Value			1.00	11	
1	00:00	0.000		ne	0.90		
2	07:0	0.000		Modulating value	0.80		
3	07:0	1.000		ling	0.70		
4	24:0) 1.000		nlat			
5	24:0	0.000		Pot l	0.60		
				2	0.50		
					0.40	··················	
					0.30		
					0.20		
					0.10	1 1 1 1 1 1	
					0.00		16 18 20 22 24
						Time of	

Figure A3 shows the conditioning hours for the living area and Figure A4 for the bedrooms.

Figure A3: Conditioning profile for the living area

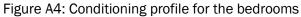


Table A1 shows the heating operation profiled and Table A2 the cooling.

Space ID	Space Name	Heating operation profile	Heating Setpoint (°C)
MN000004	Hall / Entry	NatHERS living area conditioning 🛛 🗸 🗸	20.0 ~
MN000005	Bedroom 3	NatHERS bedrooms conditioning \sim	16.8 ~
MN000006	Bedroom 2	NatHERS bedrooms conditioning 🗸 🗸 🗸	16.8 ~
MN000009	Bathroom	off continuously ~	20.0 ~
MN000001	Main Bedroom - Ensuite	NatHERS bedrooms conditioning 🛛 🗸	16.8 ~
LN000002	Lean to roof kitchen	off continuously ~	20.0 ~
LN000004	Lean to roof 1	off continuously ~	20.0 ~
LN000001	Lean to roof 3	off continuously ~	20.0 ~
LN000005	Lean to roof master bedroom	off continuously ~	19.0 ~
MN000003	Main Bedroom	NatHERS bedrooms conditioning 🛛 🗸 🗸	16.8 ~
MN000002	Main Bedroom circulation	NatHERS bedrooms conditioning 🗸 🗸 🗸	16.8 ~
MN000007	Main Bedroom WIR	NatHERS bedrooms conditioning 🗸 🗸 🗸	16.8 ~
LN000003	Lean to roof 2	off continuously ~	19.0 ~
KT000000	Kitchen / Living / Dining / Study	NatHERS living area conditioning 🛛 🗸 🗸	20.0 ~
KT000001	Laundry	off continuously \sim	20.0 🗸

Table A1: Heating operation profile

Table A2: Cooling operation profile

	Space ID	Space Name	Cooling operation profile	Cooling Setpoint (°C)
	MN000004	Hall / Entry	NatHERS living area conditioning 🛛 🗸	24.0 ~
	MN000005	Bedroom 3	NatHERS bedrooms conditioning ~	24.0 ~
	MN000006	Bedroom 2	NatHERS bedrooms conditioning ~	24.0 ~
	MN000009	Bathroom	off continuously ~	24.0 ~
	MN000001	Main Bedroom - Ensuite	NatHERS bedrooms conditioning ~	24.0 ~
	LN000002	Lean to roof kitchen	off continuously ~	24.0 ~
	LN000004	Lean to roof 1	off continuously ~	24.0 ~
	LN000001	Lean to roof 3	off continuously ~	24.0 ~
	LN000005	Lean to roof master bedroom	off continuously ~	23.0 ~
	MN000003	Main Bedroom	NatHERS bedrooms conditioning ~	24.0 ~
	MN000002	Main Bedroom circulation	NatHERS bedrooms conditioning ~	24.0 ~
	MN000007	Main Bedroom WIR	NatHERS bedrooms conditioning ~	24.0 ~
	LN000003	Lean to roof 2	off continuously ~	23.0 ~
	KT000000	Kitchen / Living / Dining / Study	NatHERS living area conditioning	24.0 ~
\square	KT000001	Laundry	off continuously ~	24.0 ~

System Space Co	onditions Internal Gains	Air Exchanges	Comfort
Туре	Referenc	e	
Miscellaneous Miscellaneous Miscellaneous Miscellaneous	Latent livi NatHERS	ving NatHERS ba ng NatHERS ban sensible bedroor Latent bedroom	ksia
Туре	Miscellaneous		
Reference	Sensible living NatHERS b	oanksia	
Diversity factor		1	
Maximum Sensible	Gain	1610.00	Watts
Maximum Latent G	ain	0.00	Watts
Maximum Power Co	onsumption:	1610.00	Watts
Radiant Fraction		0.22	
Meter	Electricity: Meter 1		
Variation Profile	NatHERS sensible interna	al gains living	
Allow profile to	saturate for loads analysis	5?	

Figures A5 – A8 show the maximum sensible and latent internal gains

Figure A5: Maximum sensible internal gains living area

Miscellaneous Miscellaneous Miscellaneous		Latent liv NatHERS	iving NatHERS ba ing NatHERS ban sensible bedroon	ksia
Miscellaneous		NatHERS	Latent bedroom	
уре	Miscella	neous		
Reference	Latent	living NatHERS b	anksia	
)iversity factor			1	
1aximum Sensible 1aximum Latent G	ain		0.00 750.00	Watts Watts
1aximum Power C	onsumpti	on:	750.00	Watts
adiant Fraction	-		0.22	
/leter /ariation Profile		ity: Meter 1		
Carlation Uronia	Banksia	living latent gair	IS	
anauon Fronie				

System Space Co	onditions Ir	nternal Gains	Air Exchanges	Comfort					
Туре		Referen	te						
Miscellaneous Miscellaneous			iving NatHERS ba						
Miscellaneous NatHERS sensible bedroom									
Miscellaneous NatHERS Latent bedroom									
Туре	Miscellane	ous							
Reference	NatHERS s	sensible bedro	om						
Diversity factor			1						
Maximum Sensible	Gain		100.00	Watts					
Maximum Latent G	ain		0.00	Watts					
Maximum Power C	onsumption:		100.00	Watts					
Radiant Fraction			0.22						
Meter	Electricity:	: Meter 1							
Variation Profile		ensible bedroo	m dains						
	barnola be		in gains						
Allow profile to	saturate fo	r loads analysi	<7						
	Saturate 10	r loada di idiya	<i></i>						

Figure A7: Maximum sensible internal gains bedroom

System Space Co	onditions Internal Gains	Air Exchanges	Comfort				
Туре	Refere	nce					
Miscellaneous Sensible living NatHERS banksia Miscellaneous Latent living NatHERS banksia Miscellaneous NatHERS sensible bedroom							
Miscellaneous	NatHER	S Latent bedroom					
Туре	Miscellaneous						
Reference	NatHERS Latent bedro	om					
Diversity factor		1					
Diversity Factor		-					
Maximum Sensible	Gain	0.00	Watts				
Maximum Latent G	iain	33.00	Watts				
Maximum Power C	onsumption:	33.00	Watts				
Radiant Fraction		0.22					
Meter	Electricity: Meter 1						
Variation Profile	Nathers latent gains be	edroom					
✓ Allow profile to	saturate for loads analy	sis?					

Figure A8: Maximum latent internal gains bedroom

Profi	le Name:			ID:		
Nat	HERS internal gains	sensible living		DAY	r_0029	Modulating Absolute
Cate	gories:		~			
	Time	Value			1.00	
1	00:00	, and	0.062	e	0.90	
2	08:00		0.062	value	0.80	
3	08:00		0.534	ing		
4	09:00		0.534	Modulating	0.70	
5	09:00		0.348	Pop	0.60	
6	10:00		0.348	2	0.50	······································
7	10:00		0.149		0.40	
8	18:00		0.149		0.30	
9	18:00		0.379		0.20	
10	19:00		0.379		0.10	
11	19:00		1.000			d d
12	20:00		1.000		0.00 11111	
13	20:00		0.472			Time of Day

Figures A9 – A12 demonstrate the profiles used for internal and latent heat gains.

Figure A9: Internal sensible heat gains living area profile

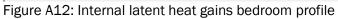

Profi	ile Name		1	ID:					
NA	THERS la	tent gains living space		DAY_00	31	0	Modulating		bsolute
Cate	gories:	~							
	Time	Value		1.	.00 ;;;;	;	; ; ; ;	;;;	11 :
1	00:00	0.000		g 0.	.90				·
2	08:00	0.000		value	.80				
3	08:00	0.533		ing B					
4	09:00	0.533		Modulating	.70 -	1			
5	09:00	0.267		to to	. 60 -				
6	10:00	0.267		2 0.	.50 -				
7	10:00	0.133		0.	. 40				
8	18:00	0.133		0.	.30				
9	18:00	0.200			.20		1		
10	19:00	0.200							
11	19:00	1.000		0.	.10 -	1			1 1
12	20:00	1.000		0.	.00 02 04		8 10 12 1	4 16 18	20 22
13	20:00	0.200					Time	of Day	
14	22.00								

Figure A10: Internal latent heat gains living area profile

2	Edit Proje	ct Daily Profile DAY_0032												x
Pro	file Name	:		ID:										
B	anksia Ser	sible Bedroom		DAY_0032 Mo		Modu	Nodulating OAb		Abso	lute				
Ca	tegories:	· · · · · · · · · · · · · · · · · · ·												
	Time	Value	1		1.00 -								1	n
1	00:00	0.667		ne	0.90 -									
2	07:00	0.667		Modulating value	0.80 -									
3	07:00	0.000		lig .	0.70 -									
4	07:00	0.000		nlat				1						11
5	07:00	0.000		Pot -	0.60 -		111		1	111		1		
E	20:00	0.000		2	0.50 -		1-1			+				
7	20:00	0.333			0.40 -		÷							
8	23:00	0.333			0.30 -		4					¶	+-	4
9	23:00	1.000												
1	24:00	1.000			0.20 -								1	
1	24:00	0.667			0.10 -									
					0.00	0 02	04 0	6 08	10	12 1	4 16	18 2	1111 0 22	24
											of Da			

Figure A11: Internal sensible heat gains bedroom profile

6	Ec	lit Proje	ct Daily Profile DAY_0033				
P	rofi	le Name:			ID:		
	Nat	HERS La	tent gains bedroom		DAY	AY_0033 Modulating Absolute	
0	ate	gories:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
[Time	Value]		1.00	r.
	1	00:00	1.000		e	0.90	
	2	07:00	1.000		Modulating value	0.80 -	
	3	07:00	0.000		l ing	0.70	
	4	23:00	0.000		Inlat	0.70	
	5	23:00	1.000		Mod	0.60	
	6	24:00	1.000		2	0.50	
						0.40	
						0.30	
						0.20	
						0.10	
						0.00 00 02 04 06 08 10 12 14 16 18 20 22 24 Time of Day	1
						, , , , , , , , , , , , , , , , , , ,	

Tables A3 and A4 show the allocation of the sensible internal heat gains to bedrooms and living area.

Space ID	Space Name	Space Sub Type	Gain 1 Variation Profile	9
MN000004	Hall / Entry	Room ~	off continuously	~
MN000005	Bedroom 3	Room ~	off continuously	\sim
MN000006	Bedroom 2	Room ~	off continuously	\sim
MN000009	Bathroom	Room ~	off continuously	\sim
MN000001	Main Bedroom - Ensuite	Room ~	off continuously	\sim
LN000002	Lean to roof kitchen	Room ~	off continuously	\sim
LN000004	Lean to roof 1	Room ~	off continuously	\sim
LN000001	Lean to roof 3	Room ~	off continuously	\sim
LN000005	Lean to roof master bedroom	Room ~	-	
MN000003	Main Bedroom	Room ~	off continuously	\sim
MN000002	Main Bedroom circulation	Room ~	off continuously	\sim
MN000007	Main Bedroom WIR	Room ~	off continuously	\sim
LN000003	Lean to roof 2	Room ~	-	
KT000000	Kitchen / Living / Dining / Study	Room ~	NatHERS sensible internal gains living	~
KT000001	Laundry	Room ~	off continuously	\sim

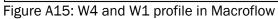
Table A3: Sensible internal gains applied to living are in Apache Sim

Table A4: Sensible internal gains applied to bedrooms in Apache Sim

Space ID	Space Name	Space Sub Type	Gain 3 Variation Profile	8
MN000004	Hall / Entry	Room ~	off continuously	~
MN000005	Bedroom 3	Room ~	Banksia sensible bedroom gains	~
MN000006	Bedroom 2	Room ~	Banksia sensible bedroom gains	`
MN000009	Bathroom	Room ~	off continuously	``
MN000001	Main Bedroom - Ensuite	Room ~	off continuously	`
LN000002	Lean to roof kitchen	Room ~	off continuously	`
LN000004	Lean to roof 1	Room ~	off continuously	`
LN000001	Lean to roof 3	Room ~	off continuously	`
LN000005	Lean to roof master bedroom	Room ~	-	
MN000003	Main Bedroom	Room ~	Banksia sensible bedroom gains	`
MN000002	Main Bedroom circulation	Room ~	off continuously	`
MN000007	Main Bedroom WIR	Room ~	off continuously	`
LN000003	Lean to roof 2	Room ~	-	
KT000000	Kitchen / Living / Dining / Study	Room ~	off continuously	,
KT000001	Laundry	Room ~	off continuously	

System Space Co	onditions	Internal Gains	Air Exchanges	Comfort	
Гуре		Referen	ice		
Infiltration		NCC ACH	1		
L					
Туре	Infiltrat	ion			
	Infiltrat				
Type Reference Variation Profile			usly		
Reference	NCC AC	CH			

Figure A13 shows the air exchanges applied to the models.


Figure A13: Air changes applied

Figures A14 – A16 provide example of window opening profiles in Macroflow.

AacroFlo (Opening Types						×
MacroFlo Openin	ng Types						
XTRN0000 XTRN0001	External window - Sliding External window - Bedroom 2 and 3	Reference ID	XTRN0	000			
XTRN0002 XTRN0003 XTRN0004	Main Bedroom small window (W4) W4 + W1 W5	Description	Externa	al window - Slid	ing]
XTRN0005 XTRN0006	00005 W6 + W7 0006 Kitchen Window (W8)	Exposure Type	05. 1:1	semi-exposed	wall	~	⇒ſ
XTRN0007 XTRN0008	W9 High level awning openings	Opening Category	Sliding /	/ roller door		~	
XTRN0009 XTRN0010 XTRN0011	Fixed External door Internal Door	Openable A	rea %		45		
		Equivalent o	vifice are	a [47.177 % 0	fgross	
		Crack Flow Coeffic	ient	0.150	l/(s·m·Pa^	0.6)	
		Crack Length		100	% of open	ng perimeter	
		Opening threshold		0.00	°C		
		Degree of Opening (Modulating Profile		NatHER	RS - Ventilation	~ 7	μ
Add	Remove						
Include effec	ts of wind turbulence?		[OK	Cancel	Save	

Figure A14: Sliding window / door profile in Macroflow

AcroFlo Opening Types			×
MacroFlo Opening Types			
XTRN0000 External window - Sliding XTRN0001 External window - Bedroom 2 and 3	Reference ID	XTRN000	3
XTRN0002 Main Bedroom small window (W4) XTRN0003 W4 + W1	Description	W4 + W1	L
XTRN0004 W5 XTRN0005 W6 + W7 XTRN0006 Kitchen Window (W8)	Exposure Type	05. 1:1 se	emi-exposed wall 🗸 🚽
XTRN0007 W9 XTRN0008 High level awning openings	Opening Category	Window /	door - side hung \sim
XTRN0009 Fixed XTRN0010 External door XTRN0011 Internal Door	Openable A	rea %	90
	Max Angle (Open °	90.00
	Proportions		0.5 =< Length/Height <1 \vee
	Equivalent o	orifice area	94.355 % of gross
	Crack Flow Coeffic	ient	0.150 l/(s·m·Pa^0.6)
	Crack Length		100 % of opening perimeter
	Opening threshold		0.00 °C
	Degree of Opening (Modulating Profile		NatHERS - Ventilation $\bigvee \left \overrightarrow{Y} \right $
Add Remove	J		
☑ Include effects of wind turbulence?			OK Cancel Save

🚰 MacroFlo Opening Types				×
MacroFlo Opening Types				
XTRN0000 External window - Slidi XTRN0001 External window - Bed		Reference ID	XTRN000	6
XTRN0002 Main Bedroom small wi XTRN0003 W4 + W1 XTRN0004 W5	ndow (W4)	Description	Kitchen V	Vindow (W8)
XTRN0005 W6 + W7 XTRN0006 Kitchen Window (W8)		Exposure Type	05. 1:1 se	emi-exposed wall 🗸 🚽
XTRN0007 W9 XTRN0008 High level awning oper	nings	Opening Category	Window /	door - side hung \sim
XTRN0009 Fixed XTRN0010 External door XTRN0011 Internal Door		Openable Ar	rea %	44.48
		Max Angle C)pen °	90.00
		Proportions		Length/Height > 2 \lor
		Equivalent o	rifice area	48.067 % of gross
		Crack Flow Coeffici	ient	0.150 I/(s·m·Pa^0.6)
		Crack Length		100 % of opening perimeter
		Opening threshold		0.00 °C
		Degree of Opening (Modulating Profile)		NatHERS - Ventilation V
Add Remove				
Include effects of wind turbulence?				OK Cancel Save

Figure A16: Kitchen window profile in Macroflow

Figure A17 shows the ventilation profile applied for window opening using a code in Macroflow.

C Edit Project Daily Profile DAY_0030	
Profile Name:	ID:
NathERS - Ventilation	DAY_0030 Modulating Absolute
Categories: V]
Time Value	1.00
1 00:00 (ta>24) & (ta>(to-4))	월 0.90
2 24:00 (ta>24) & (ta>(to-4))	0.90 0.80 0.80 0.70 0.70 0.60
	g 0.70
	Š
	0.50
	0.40
	0.30
	0.20
	0.10
	0.00 00 02 04 06 08 10 12 14 16 18 20 22 24
	00 02 04 06 08 10 12 14 16 18 20 22 24 Time of Day

Figure A17: Ventilation profile for window opening in Macroflow

A2. Banksia house

Figure A18 shows a plan view of the Banksia house and A19 a model view.

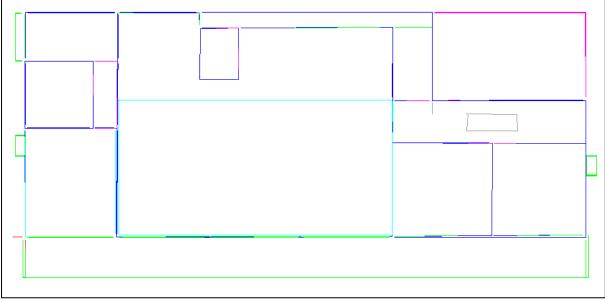


Figure A18: Banksia house plan view

Figure A19: Banksia house model view

Figures A20 – A28 show details including thermal properties for key building materials for the Banksia house.

Project Construction (Glazed: E)	xternal Wind	dow)										-	
scription: Banksia 8.1 window									1	ID: STD_EX	TW	External	Intern
formance: ASHRAE \vee													
Net U-value (including frame): 2.0	081 W/n	1²∙K	U-value (glas	ss only):	1.6479 W	/m²•K	Total sha	ading coefficie	ent: 0.5957		SHGC (c	enter-pane)	0.5182
Net R-value: 0.6068 m ³ K/W g-value (EN 410): 0.5213 Visible light normal transmittance: 0.71													
Surfaces Frame Shading Device	RadianceIE	ES											
Outside						Inside							
Emissivity: 0.837	Resi	stance (m²K/W):	0.02	99 🗹 De	efault	Emissivi	ty: 0.83	37	Resistance	e (m²K/W): [0.11	.98 🗹 De	fault
Emissivity: 0.837 Construction Layers (Outside to Ins		stance (mªK/W):	0.02	99 🗹 De	efault	Emissivi	ty: 0.83	37		e (m²K/W): [stem Materia		98 🗹 De Project Ma	
		stance (m ² K/W): Conductivity W/(m ⁻ K)	0.02 Angular Dependence	99 🗹 De Gas	Convection Coefficient W/m²·K	Emissivi Resistance m²K/W	ty: 0.83	Outside		[ils		
Construction Layers (Outside to Ins	side): Thickness	Conductivity	Angular		Convection Coefficient	Resistance		Outside	Sy Inside	stem Materia	outside	Project Ma Inside	visible Light
Construction Layers (Outside to Ins	side): Thickness mm	Conductivity W/(m·K)	Angular Dependence	Gas	Convection Coefficient W/m²·K	Resistance m²K/W	Transmittance	Outside Reflectance	Sy Inside Reflectance	stem Materia Refractive Index	Outside Emissivity	Project Ma Inside Emissivity	visible Light Specified

Figure A20: Banksia house window details

Project Construction (Opaque: External Wall)							
escription: External Wall Banksia 8.1 North						ID: WALL 1	External Interna
erformance: ASHRAE V							
U-value: 0.3327 W/m²-K Thickness: 176.200 m	m	Therma	al mass Cr	6.7044	kJ/(m²·K)		
Total R-value: 2.8564 m¾/W Mass: 27.9700 kg/m² Very lightweight							
Surfaces Functional Settings Regulations RadianceIES							
Outside		Inside					
Emissivity: 0.900 Resistance (m²K/W): 0.0299	Default	E	missivity:	0.900	Re	sistance (m²K/W)	: 0.1198 🗹 Default
Solar Absorptance: 0.350		Solar Abs	orptance:	0.550			
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materials
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN*s/(kg*m)	Category
[WBA] WEATHERBOARD	16.0	0.1400	650.0	2000.0	0.1143	200.000	Timber
Cavity	60.0	-	-	-	0.1800	-	-
[ALM] ALUMINIUM	0.2	160.0000	2800.0	896.0	0.0000	300000.000	Metals
[USGF0000] GLASS-FIBER - ORGANIC BONDED (ASHRAE)	90.0	0.0360	100.0	1000.0	2.5000	10.000	Insulating Materials
[USGP0001] GYPSUM/ PLASTER BOARD - HF-E1 (ASHRAE)	10.0	0.1610	801.0	837.0	0.0621	45.000	Plaster

Figure A21: Banksia house north wall details

Project Construction (Opaque: External Wall)							- 🗆
scription: External Wall Banksia 8.1 East; South and West						ID: WALL	External Inter
formance: ASHRAE V							
U-value: 0.3141 W/m²·K Thickness: 286.500 m	im	Therma	al mass Cr	n: 129.1044	kJ/ (m²∙K)		
Total R-value: 3.0343 m²K/W Mass: 214.9600 kg	g/m²			Lightweight			
urfaces Functional Settings Regulations RadianceIES							
Outside		Inside					
Emissivity: 0.900 Resistance (m²K/W): 0.0299	∠ Default	E	missivity:	0.900	Res	istance (m²K/W)	: 0.1198 🗸 Default
Solar Absorptance: 0.350		Solar Abs	orptance:	0.550			
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materials
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN·s/(kg·m)	Category
[WBA] WEATHERBOARD	16.0	0.1400	650.0	2000.0	0.1143	200.000	Timber
Cavity	60.0	-	-	-	0.1800	-	-
[STD_MEM] Membrane	0.5	1.0000	1100.0	1000.0	0.0005	-	Asphalts & Other Roofing
USGF0000] GLASS-FIBER - ORGANIC BONDED (ASHRAE)	90.0	0.0360	100.0	1000.0	2.5000	10.000	Insulating Materials
BRI] BRICKWORK (INNER LEAF)	110.0	0.6200	1700.0	800.0	0.1774	35.000	Brick & Blockwork
[DKI] DKICKWOKK (INNEK LEAF)							

Figure A22: Banksia house east west and south wall details

Project Construction (Opaque: Ground/Exposed Floor)							_	
Description: Banksia 8.1 star waffle pod	iption: Banksia 8.1 star waffle pod						External	Intern
Performance: ASHRAE V								
U-value: 0.7069 W/m²·K Thickness: 853.900 mm	kJ/(m²∙K)							
Total R-value: 0.6907 m²K/W Mass: 1603.9725 kg/m² Mediumweight								
Surfaces Functional Settings Regulations RadianceIES								
Outside		Inside						
Emissivity: 0.900 Resistance (m²K/W): 0.0299	Default	E	missivity:	0.900	Res	sistance (m²K/W)	: 0.1620	Default
Solar Absorptance: 0.550		Solar Abs	1	0.550				
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Ma	terials
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN·s/(kg·m)	Categor	y
[LNDN0000] London Clay	750.0	1.4100	1900.0	1000.0	0.5319	0.000	Sands, Stones and	Soils
[PST] POLYSTYRENE	18.9	0.0300	25.0	1380.0	0.6300	425.000	Insulating Material	s
[CCD] CAST CONCRETE (MEDIUM)	85.0	1.4000	2100.0	840.0	0.0607	500.000	Concretes	

Figure A23: Banksia house exposed concrete floor details

Project Construction (Opaque: Ground/Exposed Floor)							_		×
Description: Banksia 8.1 star waffle pod carpet						ID: FLOOR 11	External	Inter	nal
Performance: ASHRAE			al mass Crr	n: 151.9400	1.211 2.10				
U-value: 0.6676 W/m ² ·K Thickness: 858.900 m Total R-value: 0.7740 m ² ·K Mass: 1604.7726 kg	kJ/(m²∙K) it								
Surfaces Functional Settings Regulations RadianceIES									
Outside Emissivity: 0.900 Resistance (m ² K/W): 0.0299 Solar Absorptance: 0.550	Default	Inside E Solar Abse	missivity: orptance:	0.900	Re	sistance (m²K/W)	: 0.1620	Default	
Construction Layers (Outside To Inside)					S	ystem Materials.	. Project Ma	terials	
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN*s/(kg*m)	Category	/	
[LNDN0000] London Clay	750.0	1.4100	1900.0	1000.0	0.5319	0.000	Sands, Stones and	Soils	
[PST] POLYSTYRENE	18.9	0.0300	25.0	1380.0	0.6300	425.000	Insulating Materials	;	
[CCD] CAST CONCRETE (MEDIUM)	85.0	1.4000	2100.0	840.0	0.0607	500.000	Concretes		
[SCP] SYNTHETIC CARPET	5.0	0.0600	160.0	2500.0	0.0833	25.000	Carpets		

Figure A24: Banksia house carpet floor details

Project Construction (Opaque: Ground/Exposed Floor)							- 0	×
Description: Banksia 8.1 star waffle pod tile						ID: FLOOR 1	External	Internal
Performance: ASHRAE V								
U-value: 0.7040 W/m²·K Thickness: 858.900 mr	n	Therma	al mass Cm	n: 157.5400	kJ/(m²∙K)			
Total R-value: 0.6967 m [*] K/W Mass: 1613.4725 kg	/m²			Mediumweigh	t			
Surfaces Functional Settings Regulations RadianceIES								
Outside		Inside						
Emissivity: 0.900 Resistance (m²K/W): 0.0299	Default	E	Emissivity:	0.900	Res	istance (m²K/W)	: 0.1620 🗹 Defa	ult
Solar Absorptance: 0.550		Solar Abs	orptance:	0.550				
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materia	s
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN*s/(kg*m)	Category	
[LNDN0000] London Clay	750.0	1.4100	1900.0	1000.0	0.5319	0.000	Sands, Stones and Soils	
[PST] POLYSTYRENE	18.9	0.0300	25.0	1380.0	0.6300	425.000	Insulating Materials	
[CCD] CAST CONCRETE (MEDIUM)	85.0	1.4000	2100.0	840.0	0.0607	500.000	Concretes	
[CYT] CLAY TILE	5.0	0.8400	1900.0	800.0	0.0060	200.000	Tiles	

Figure A25: Banksia house tile floor details

Project Construction (Opaque: Roof)							>
Description: Banksia 8.1 star with plaster raked area						ID: ROOF	External Internal
Performance: ASHRAE V							
U-value: 0.1786 W/m²·K Thickness: 377.000 mm	n	Therma	al mass Crr	n: 9.1149	kJ/(m²·K)		
Total R-value: 5.4625 m²K/W Mass: 88.9034 kg	1/m²			Very lightwei	ght		
Surfaces Regulations RadianceIES							
Outside		Inside					
Emissivity: 0.900 Resistance (m ² K/W): 0.0299	Default	E	missivity:	0.900	Res	sistance (m²K/W)	: 0.1074 🗹 Default
Solar Absorptance: 0.350		Solar Abso	orptance:	0.550			
Construction Layers (Outside To Inside)					S	ystem Materials	Project Materials
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN·s/(kg·m)	Category
[MD] Metal Deck (ASHRAE)	0.8	160.0000	2800.0	896.0	0.0000	1000000.000	Metals
[USFM0001] FELT & MEMBRANE - FINISH - HF-A6	55.0	0.0423	1249.0	1088.0	1.3002	15000.000	Insulating Materials
[BAIN] BATT INSULATION (ASHRAE)	311.2	0.0759	32.0	837.0	4.1001	7.000	Insulating Materials
[USGP0001] GYPSUM/ PLASTER BOARD - HF-E1 (ASHRAE)	10.0	0.1610	801.0	837.0	0.0621	45.000	Plaster

Figure A26: Banksia house roof details for raked areas

Project Construction (Opaque: Roof)							- 0	×
Description: Banksia 8.1 star no plaster						ID: ROOF1	External	ternal
Performance: ASHRAE V								
U-value: 0.6956 W/m²·K Thickness: 55.800 m	n	Therm	al mass Cr	n: 0.0000	kJ/(m²∙K)			
Total R-value: 1.3002 m²K/W Mass: 70.9350 kg)/m²			Very lightwei	ght			
Surfaces Regulations RadianceIES								
Outside		Inside						
Emissivity: 0.900 Resistance (m ² K/W): 0.0299	Default	E	missivity:	0.900	Re	sistance (m²K/W)	: 0.1074 🗹 Default	
Solar Absorptance: 0.350		Solar Abs	orptance:	0.550				
Construction Layers (Outside To Inside)					S	ystem Materials	Project Materials.	••
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN's/(kg'm)	Category	
[MD] Metal Deck (ASHRAE)	0.8	160.0000	2800.0	896.0	0.0000	1000000.000	Metals	
[USFM0001] FELT & MEMBRANE - FINISH - HF-A6	55.0	0.0423	1249.0	1088.0	1.3002	15000.000	Insulating Materials	

Figure A27: Banksia house roof details for non-raked areas

Project Construction (Opaque: Internal Ceiling/Floor)							>				
Description: Internal Celling/Floor Banskia 8, 1 star						ID: CEIL	External Internal				
U-value: 0.2285 W/m ² -K Thickness: 321.200 mm Thermal mass Cm: 9.1149 kJ/(m ² -K) Total R-value: 4.1623 m ² K/W Mass: 17.9684 kg/m ² Very lightweight											
Surfaces Regulations RadianceIES											
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materials				
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN·s/(kg·m)	Category				
[BAIN] BATT INSULATION (ASHRAE)	311.2	0.0759	32.0	837.0	4.1001	7.000	Insulating Materials				
[USGP0001] GYPSUM/ PLASTER BOARD - HF-E1 (ASHRAE)	10.0	0.1610	801.0	837.0	0.0621	45.000	Plaster				

Figure A28: Banksia house ceiling details (which applies to non-raked areas)

Figures A29 – A34 show the application of some of the key thermal templates to different areas of the model.

💞 Assign constructions				o ×
	Ground/expo Roof Internal floor External wall Door External glaz Internal part	ing ition	Show all ∽	ASHRAE V
	ID	Assigned Construction types	Standard	U-value
	STD_FLO1	2013 Exposed Floor	Generic	0.221
	FLOOR	Banksia 8.1 star waffle pod	Generic	0.707
	FLOOR11	Banksia 8.1 star waffle pod carpet	Generic	0.668
	FLOOR1	Banksia 8.1 star waffle pod tile	Generic	0.704

	ID	Possible replacement construction types	Standard	U-value
	STD_FL01	2013 Exposed Floor	Generic	0.221
	FLOOR	Banksia 8.1 star waffle pod	Generic	0.707
	FLOOR1	Banksia 8.1 star waffle pod tile	Generic	0.704
	FLOOR11	Banksia 8.1 star waffle pod carpet	Generic	0.668
	Replace	APcdb		Close

Figure A29: Allocation of carpet area for Banksia house flooring

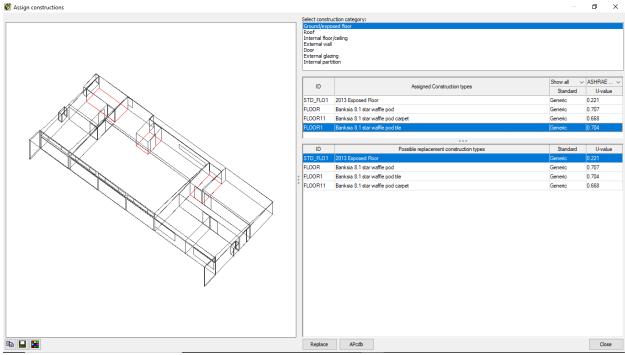


Figure A30: Allocation of tiled area for Banksia house flooring

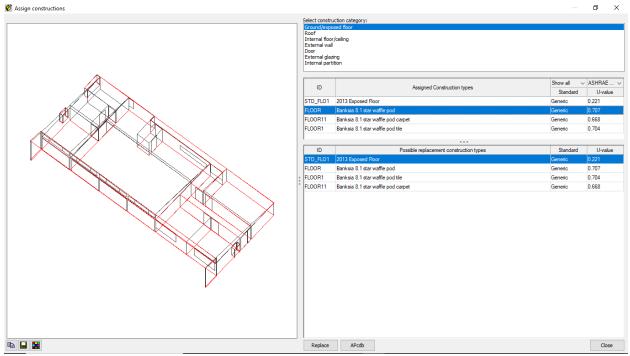


Figure A31: Allocation of exposed concrete area for Banksia house flooring

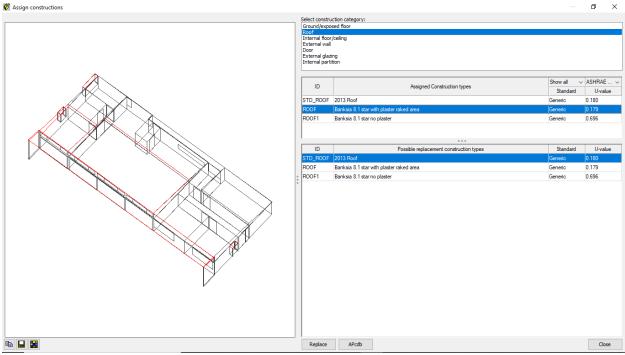
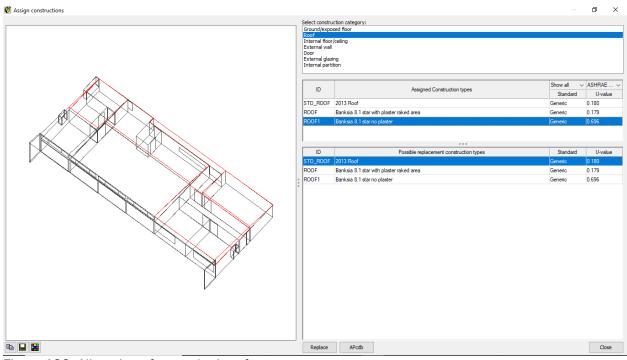
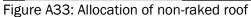




Figure A32: Allocation of raked roofing area

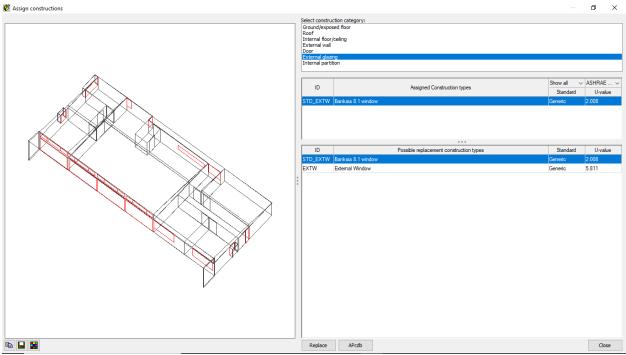


Figure A34: Allocation of Banksia house double glazing

Tables A5 – A7 show results of the Banksia house simulation in the current climate

Σh Chart(1): Fri 01/Jan to Fri 31	/Dec										
Output Analysis Help											
🖬 🚳 🖻 🗵 🔚 🛍 ዞ! 🔔 ∑ 🥝 🖻 🖉 🕍 🕍 🚔 🖬 🕼 🔾 💌 🕷											
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)								
D.L.	Paulais annalais 0.1 atas	Dealach anns bha 0.1 star	Paulais annalata 0.1 atas								
	Date Banksia complete 8.1 star Banksia complete 8.1 star Banksia complete 8.1 star										
Jan 01-31	0.0006	0.6936	2.9154								
Feb 01-28	0.0009	0.4781	2.5533								
Mar 01-31	0.0666	0.5145	2.8516								
Apr 01-30	0.2117	0.0791	2.6071								
May 01-31	0.7281	0.0012	2.9052								
Jun 01-30	1.3888	0.0000	3.1530								
Jul 01-31	1.2457	0.0000	3.1634								
Aug 01-31	1.1053	0.0000	3.0932								
Sep 01-30	0.7889	0.0000	2.8530								
Oct 01-31 0.4569 0.0000 2.7690											
Nov 01-30 0.2059 0.0500 2.5886											
Dec 01-31	0.0765	0.1506	2.6601								
Summed total	6.2759	1.9670	34.1131								

Table A5: Banksia house thermal load and total system energy in current climate

Table A6: Banksia house peak loads and internal temperature current climate conditioned

μ! Chart(1): F	ri 01/Jan to Fri 3	1/Dec			2411		_		\times
Output Analy	sis Help								
🛛 🎒 🖪 🗄	🛪 📜 🔯 hi	.2. Σ 🛞 🖻	🙆 🕼 🚍 🖬 🕍	i 🔟 🔿 💌	1				
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean	
Air temperature	Main Bedroom	Banksia complete	Temperature (°C)	16.66	09:30,24/Jul	41.10	14:30,07/Mar	20.13	
Air temperature	Kitchen / Living	Banksia complete	Temperature (°C)	15.11	06:30,21/Jul	27.88	03:30,03/Jan	20.60	
Boilers load		Banksia complete	Sys load (kW)	0.0000	00:30,01/Jan	9.2977	07:30,21/Jul	0.7164	
Chillers load		Banksia complete	Sys load (kW)	0.0000	00:30,01/Jan	22.4960	16:30,25/Jan	0.2245	

Table A7: Banksia house internal temperature current climate unconditioned

H Chart(2): F	Fri 01/Jan to Fri	31/Dec					_		\times
Output Analy	ysis Help								
🖬 🍯 🔝	🗠 📄 🖾 🏼	12Σ 😣	🖻 🙆 🗠 🖻	۵۵ 🖬 🔫	0 💌 🕷 🔌				
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time		Mean
Air temperature	Main Bedroom	Banksia Current	Temperature (*C)	10.43	07:30,16/Jun	42.20	14:30,07/Ma	st	18.95
Air temperature	Kitchen / Living	Banksia Current	Temperature ("C)	10.41	07:30,16/Jun	42.21	14:30,07/Ma	at .	18.88

Table A8 – A10 show results of the Banksia house simulation in the future climate

Table A8: Banksia house thermal load and total system energy in future climate

Σh Chart(1): Fri 01/Jan to Fri 31,	/Dec		
Output Analysis Help			
14 🖾 📑 🖄 🛍 🖗 🖫	.2. Σ 🙆 🖻 🙆 🖌	2 🚘 ₩ 🔛 🔟 🔾	💌 🗷 👯
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)
Date	Banksia complete 8.1 star	Banksia complete 8.1 star	Banksia complete 8.1 star
Jan 01-31	0.0004	1.7695	3.4963
Feb 01-28	0.0000	1.6074	3.1627
Mar 01-31	0.0000	1.2361	3.2081
Apr 01-30	0.0124	1.3990	3.2202
May 01-31	0.1311	0.0927	2.6562
Jun 01-30	0.4627	0.0195	2.7005
Jul 01-31	0.5158	0.0032	2.8002
Aug 01-31	0.3810	0.0516	2.7589
Sep 01-30	0.2406	0.0243	2.5920
Oct 01-31	0.1169	0.2606	2.7397
Nov 01-30	0.0636	0.3680	2.6891
Dec 01-31	0.0000	1.2175	3.1980
Summed total	1.9245	8.0495	35.2219

Table A9: Banksia house peak loads and internal temperature future climate conditioned

HI Chart(1): Fi	ri 01/Jan to Fri 3	1/Dec					_	\Box \times
Output Analy	sis Help							
🖬 🕭 🖻 k	🛪 📜 🖾 hi	.2. Σ 🙆 🖻	🙆 🔛 🚘 🖌	i 🔟 🔿 💌	📕 👯			
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean
Air temperature	Main Bedroom	Banksia complete	Temperature (°C)	16.77	09:30,28/Jun	44.31	15:30,07/Mar	21.90
Air temperature	Kitchen / Living	Banksia complete	Temperature (°C)	15.61	06:30,16/Aug	28.38	04:30,19/Dec	21.96
Boilers load		Banksia complete	Sys load (kW)	0.0000	00:30,01/Jan	8.4539	07:30,16/Aug	0.2197
Chillers load		Banksia complete	Sys load (kW)	0.0000	23:30,01/Jan	38.9379	16:30,19/Apr	0.9189

Table ATO.	Dariksia II	ouse miler	nai temperat	ule lutui	e ciimate un	Jonution	ieu	
μ! Chart(2): Fr	i 01/Jan to Fri 31	1/Dec					— [⊐ ×
Output Analys	sis Help							
📙 🚑 🛅 🖄	🛪 鵟 🔯 hi	.2. Σ 🛞 [º 🔺 🗠 🔍	' 🔤 🔟 🤇	<i>i</i> 🖲 🖲 📢			
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean
Air temperature	Main Bedroom	Banksia Future	Temperature (*C)	12.63	08:30,28/Jun	45.76	15:30,07/Mar	21.93
Air temperature	Kitchen / Living	Banksia Future	Temperature (*C)	12.51	07:30,28/Jun	45.77	15:30,07/Mar	21.86

Table A10: Banksia house internal temperature future climate unconditioned

A3. BCA house

Figure A35 shows the plan view of the BCA house and figure A36 the model view

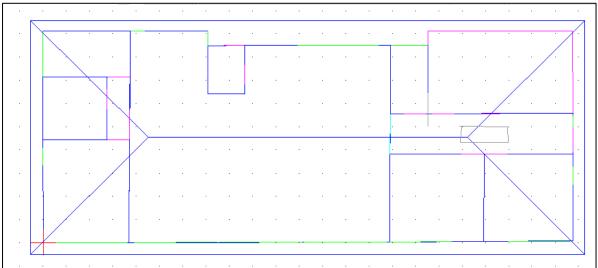


Figure A35: BCA house plan view

Figure A36: BCA house Model view

Figures A37 – A43 show thermal properties for key building materials for the BCA house.

Project Construction (Opaque: External Wall)							- 0
scription: External Wall R2.8 BCA compliant						ID: WALL3	External
rformance: ASHRAE V							
U-value: 0.3390 W/m²·K Thickness: 239.100 mm	n	Therma	al mass Cm	6.7044	kJ/(m²∙K)		
Total R-value: 2.8003 m ² K/W Mass: 212.5200 kg	ght						
Surfaces Functional Settings Regulations RadianceIES							
Outside		Inside					
Emissivity: 0.900 Resistance (m²K/W): 0.0299	Default	E	missivity:	0.900	Res	istance (m²K/W)	: 0.1198 🗹 Default
Solar Absorptance: 0.700		Solar Abs	orptance:	0.550			
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materials
Material	Thickness mm	Conductivity W/(m·K)	Density kg/m³	Specific Heat Capacity J/(kg·K)	Resistance m²K/W	Vapour Resistivity GN*s/(kg*m)	Category
[PLL] PLASTER (LIGHTWEIGHT)	15.0	0.1600	600.0	1000.0	0.0938	45.000	Plaster
[BRO] BRICKWORK (OUTER LEAF)	110.0	0.8400	1700.0	800.0	0.1310	58.000	Brick & Blockwork
Cavity	20.0	-	-	-	0.1800	-	-
[STD_MEM] Membrane	0.1	1.0000	1100.0	1000.0	0.0001	-	Asphalts & Other Roofing
[USGF0000] GLASS-FIBER - ORGANIC BONDED (ASHRAE)	84.0	0.0360	100.0	1000.0	2.3333	10.000	Insulating Materials
[USGP0001] GYPSUM/ PLASTER BOARD - HF-E1 (ASHRAE)	10.0	0.1610	801.0	837.0	0.0621	45.000	Plaster

Figure A37: External wall details BCA house

Project Construction (Opaque: Ground/Exposed Floor)							- 🗆 X			
Description: BCA concrete + carpet						ID: FLOOR 11	External Internal			
Performance: ASHRAE ~										
U-value: 1.0526 W/m²·K Thickness: 955.000 mm	U-value: 1.0526 W/m ² ·K Thickness: 955.000 mm Thermal mass Cm: 169.5800 kJ/(m									
Total R-value: 0.2262 m %/W Mass: 1845.8000 kg/m² Mediumweight										
Surfaces Functional Settings Regulations RadianceIES										
Outside										
Emissivity: 0.900 Resistance (m ² K/W): 0.0299	Default	E	Emissivity:	0.900	Res	sistance (m²K/W]): 0.1620 🔽 Default			
Solar Absorptance: 0.550		Solar Abs	orptance:	0.550						
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materials			
Material Thickness mm Conductivity W/(m*K) Density kg/m³ Specific Heat Capacity J/(kg *K) Resistance m*K/W Vapour Resistivity GN*s/(kg m)										
[LNDN0000] London Clay	750.0	1.4100	1900.0	1000.0	0.5319	0.000	Sands, Stones and Soils			
[CCD] CAST CONCRETE (MEDIUM)	200.0	1.4000	2100.0	840.0	0.1429	500.000	Concretes			
[SCP] SYNTHETIC CARPET 5.0 0.0600 160.0 2500.0 0.0833 25.000 Carpets										

Figure A38: Carpeted floor details BCA house

constructions								_		
Project Construction (Opaque: Ground/Exposed Floor)							- 0	×		
Description: BCA concrete + tile						ID: FLOOR1	External Int	ernal		
Performance: ASHRAE V										
U-value: 1.1459 W/m ² -K Thidmess: 955.000 mm Thermal mass Cm: 175.1800 kJ/(m ² -K)										
Total R-value: 0.1488 m¥/W Mass: 1854.5000 kg/m² Mediumweight										
Surfaces Functional Settings Regulations RadianceIES										
Outside		Inside								
Emissivity: 0.900 Resistance (m ² K/W): 0.0299	Default	E	Emissivity:	0.900	Res	sistance (m²K/W)): 0.1620 🗹 Default			
Solar Absorptance: 0.550		Solar Abs	orptance:	0.550						
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materials			
Material Thickness mm Conductivity W/(m + C) Density kg/m ³ Specific Heat Capacity J/(kg + K) Vapour m ³ K/W Vapour Resistivity GN's/(kg m) Vapour Category										
[LNDN0000] London Clay	750.0	1.4100	1900.0	1000.0	0.5319	0.000	Sands, Stones and Soils			
[CCD] CAST CONCRETE (MEDIUM)	200.0	1.4000	2100.0	840.0	0.1429	500.000	Concretes			
[CYT] CLAY TILE 5.0 0.8400 1900.0 800.0 0.0060 200.000 Tiles										

Figure A39: Tiled floor details BCA house

Project Construction (Opaque: Ground/Expos	ed Floor)							-		×
escription: BCA concrete + timber							ID: FLOOR	External	Inte	ernal
formance: ASHRAE U-value: 1.0499 W/m ² ·K Thickness: 962.000 mm Thermal mass Cm: 164.5920 kJ/(m ² ·K) Total R-value: 0.2286 m ² K/W Mass: 1852.9000 kg/m ² Mediumweight										
Surfaces Functional Settings Regulations RadianceIES Outside Emissivity: 0.900 Resistance (m ³ K/W): 0.0299 Default Solar Absorptance: 0.550 Solar Absorptance: 0.550										
Construction Layers (Outside To Inside)						S	ystem Materials.	Project M	aterials	
Material Thickness mm Conductivity W/(m+X) Density kg/m ² Specific Heat Capacity J/(kg +X) Resistance m ² K/W Vapour Resistivity GN's/(kg m)										
[LNDN0000] London Clay		750.0	1.4100	1900.0	1000.0	0.5319	0.000	Sands, Stones and	d Soils	
[CCD] CAST CONCRETE (MEDIUM)		200.0	1.4000	2100.0	840.0	0.1429	500.000	Concretes		
[TMF] TIMBER FLOORING		12.0	0.1400	650.0	1200.0	0.0857	200.000	Timber		

Figure A40: Timber floor details BCA house

Project Construction (Glazed: Ext	ternal Wind	low)										-		×
Description: External Window BCA	compliant								I	D: EXTW1		External	Interna	al
Performance: ASHRAE V														
Net U-value (including frame): 5.8111 W/m ² ·K Total shading coefficient: 0.9329 SHGC (center-pane): 0.8116														
Net R-value: 0.1554 m ⁻ K/W g-value (EN 410): 0.8199 Visible light normal transmittance: 0.76														
Surfaces Frame Shading Device RadianceIES														
Outside						Inside								
Emissivity: 0.837	Resis	stance (m²K/W):	0.029	99 🗹 De	fault	Emissivit	ty: 0.83	37	Resistance	(m²K/W): [0.11	.98 🗹 De	fault	
Construction Layers (Outside to Inside	Construction Layers (Outside to Inside): Project Materials Project Materials													
Material	Thickness mm	Conductivity W/(m·K)	Angular Dependence	Gas	Convection Coefficient W/m²·K	Resistance m²K/W	Transmittance	Outside Reflectance	Inside Reflectance	Refractive Index	Outside Emissivity	Inside Emissivity	Visible Light Specified	
[EXTW] CLEAR FLOAT 6MM	6.0	1.0600	Fresnel	-	-	0.0057	0.780	0.070	0.070	1.526	-	-	No	

Figure A41: Window details BCA house

Project Construction (Opaque: Roof) – 🗆 🗙									
Description: BCA compliant						ID: ROOF11	External		
Performance: ASHRAE V									
U-value: 0.5757 W/m²·K Thickness: 86.900 mm	U-value: 0.5757 W/m ² ·K Thickness: 86.900 mm Thermal mass Cm: 0.0000 kJ/(m ² ·K)								
Total R-value: 1.5997 m²K/W Mass: 125.5581 kg	Total R-value: 1.5997 m ² K/W Mass: 125.5581 kg/m ² Very lightweight								
Surfaces Regulations RadianceIES									
Outside		Inside							
Emissivity: 0.900 Resistance (m ² K/W): 0.0299	Default	E	missivity:	0.900	Res	iistance (m²K/W)	: 0.1074 🔽 Default		
Solar Absorptance: 0.300		Solar Abs	orptance:	0.550					
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Materials		
Material Thickness mm Conductivity W/(m K) Density kg/m³ Specific Heat Capacity J/(kg K) Resistance m³K/W Vapour Resistivity GN's/(kg m) Category									
[CT] CONCRETE TILES	20.0	1.1000	2100.0	837.0	0.0182	500.000	Tiles		
[LISFM0001] FELT & MEMBRANE - FINISH - HF-A6 66.9 0.0423 1249.0 1088.0 1.5816 15000.000 Insulating Materials									

Figure A42: Roof details BCA house

Project Construction (Opaque: Internal Ceiling/Floor)							_	Project Construction (Opaque: Internal Ceiling/Floor) – 🗆 🗙										
Description: Internal Celling BCA house Performance: ASHRAE						ID: CEIL	External	Internal										
U-value: 0.3110 W/m ² ·K Thickness: 233.000 mm Thermal mass Cm: 9.1149 kJ/(m ² ·K) Total R-value: 3.0002 m ³ K/W Mass: 15.1460 kg/m ² Very lightweight																		
Outside	Emissivity: 0.900 Resistance (m K/W): 0.1074 Default Emissivity: 0.900 Resistance (m K/W): 0.1074 Default																	
Construction Layers (Outside To Inside)					S	ystem Materials.	Project Mate	erials										
Material Thickness mm Conductivity W/(m K) Density kg/m ³ Specific Heat Capacity J/(kg K) Resistance mK/W Vapour Resistivity GN's/(kg m) Category																		
[BAIN] BATT INSULATION (ASHRAE)	223.0	0.0759	32.0	837.0	2.9381	7.000	Insulating Materials											
[USGP0001] GYPSUM/ PLASTER BOARD - HF-E1 (ASHRAE)	0.1610	801.0	837.0	0.0621	45.000	Plaster												

Figure A43: Ceiling details BCA house

Figures A44 – A50 show the application of the construction materials to different parts of the BCA house.

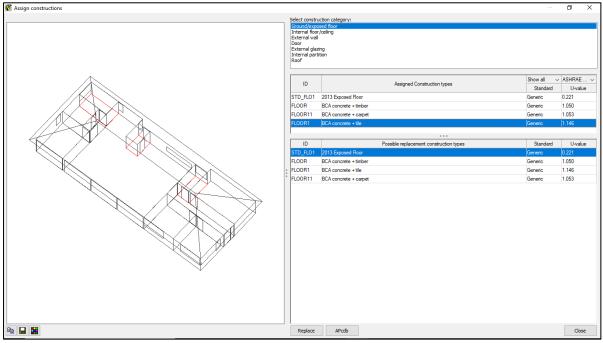


Figure A44: Allocation of tiled floor area BCA house

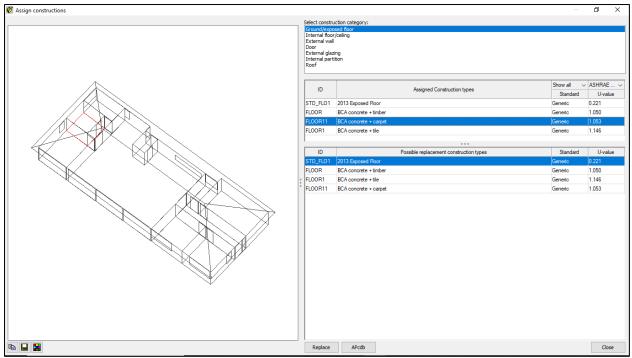


Figure A45: Allocation of carpet floor area BCA house

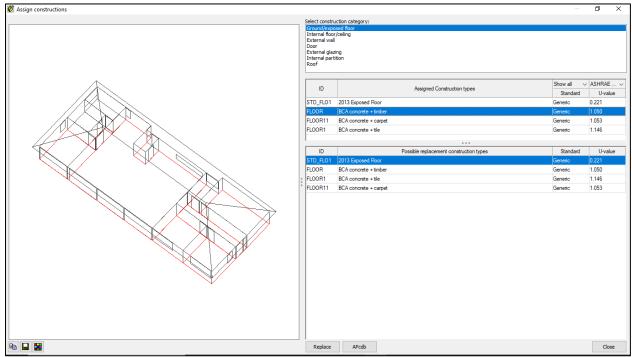


Figure A46: Allocation of timber floor area BCA house

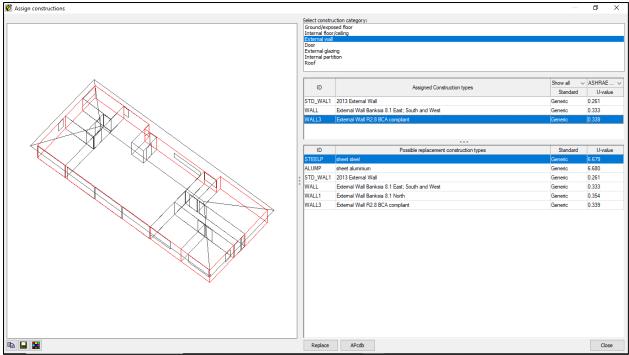


Figure A47: Allocation of external wall area BCA house

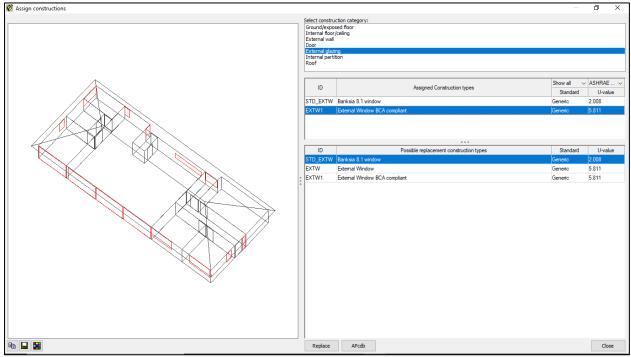


Figure A48: Allocation of windows BCA house

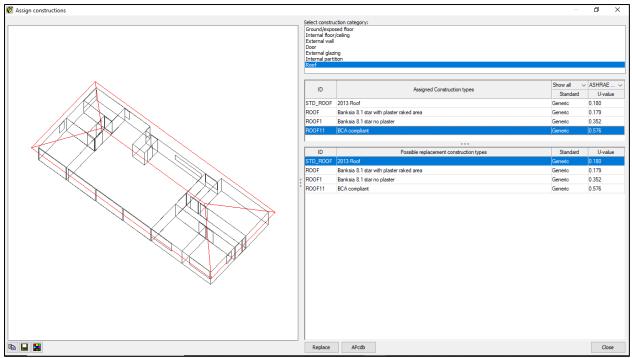


Figure A49: Allocation of roof type BCA house

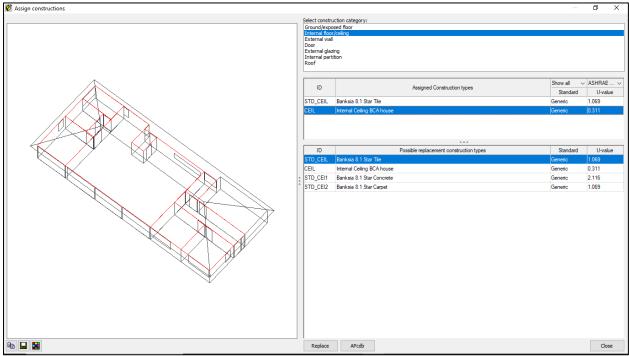


Figure A50: Allocation of ceiling BCA house

Table A11 – A13 show results of the BCA house simulation in the current climate.

Σh Chart(1): Fri 01/Jan to Fri 31	/Dec		– 🗆 X				
Output Analysis Help							
🗒 🗃 🖄 🔚 🕅 💾	.2. Σ 🙆 🖻 🗠 🚾 🖿	¢ 🗷 🖻 🔾 🔐					
	Boilers load (MWh) Chillers load (MWh)						
Date	BCA compliant current climate.aps	BCA compliant current climate.aps	BCA compliant current climate.aps				
Jan 01-31	0.0189	0.7515	2.9557				
Feb 01-28	0.0206	0.6560	2.6591				
Mar 01-31	0.2107	0.7102	3.0293				
Apr 01-30	0.5636	0.1678	2.8309				
May 01-31	1.4103	0.0281	3.2608				
Jun 01-30	2.3179	0.0026	3.6188				
Jul 01-31	2.1973	0.0000	3.6391				
Aug 01-31	1.9828	0.0035	3.5337				
Sep 01-30	1.4789	0.0095	3.2031				
Oct 01-31	0.8571	0.0208	2.9802				
Nov 01-30	0.5030	0.0885	2.7578				
Dec 01-31	0.2488	0.1823	2.7632				
Summed total	11.8098	2.6207	37.2317				

Table A11: Thermal loads and total system energy BCA house current climate

Table A12: Peak heating and cooling loads and internal temperatures BCA house current climate

μ! Chart(1): F	Fri 01/Jan to Fri S	31/Dec					_		
Output Analy	Output Analysis Help								
🖬 🚳 🖾 🔚 🖾 📕 2. Σ 🕝 🖻 🖉 🕼 🚍 📂 🔛 🔟 🔾 💌 🗷 🗞									
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean	
Boilers load		BCA compliant	Sys load (kW)	0.0000	00:30,01/Jan	10.9468	07:30,22/Jun	1.3482	
Chillers load		BCA compliant	Sys load (kW)	0.0000	00:30,01/Jan	30.2354	16:30,07/Mar	0.2992	
Air temperature	Main Bedroom	BCA compliant	Temperature (°C)	16.21	09:30,24/Jul	42.41	14:30,07/Mar	19.58	
Air temperature	Kitchen / Living	BCA compliant	Temperature (°C)	13.73	06:30,21/Jul	28.04	03:30,03/Jan	20.07	

Table A13: Internal temperatures BCA house current climate unconditioned

μ! Chart(1): F	ri 01/Jan to Fri 3	1/Dec					_		×
Output Analysis Help									
🖬 🚳 🖄 🔚 🖆 📕 2. Σ 🛞 🖻 💌 🗠 🚍 📂 🔛 👫 📀 💌 🔅									
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean	
Air temperature	Main Bedroom	BCA compliant	Temperature (°C)	8.25	06:30,21/Jul	42.44	14:30,07/Mar	17.90	
Air temperature	Kitchen / Living	BCA compliant	Temperature (°C)	8.51	06:30,21/Jul	42.34	14:30,07/Mar	17.89	

Tables A14 – A16 show results of the BCA house simulation in the future climate.

	Fear the	mai luaus	and internal	tempere	ILUIES DOA IIC			ultioneu		
H Chart(1): i	Fri 01/Jan to Fri	31/Dec					_		\times	
Output Analysis Help										
🖬 进 🖬	μ 🖾 📑 🖄	! ユ Σ 😕	🖻 🙆 🗠 🖻	۵۵ 🖬 🖬	O 💌 🕷 🔌					
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean		
Boilers load		BCA compliant	Sys load (kW)	0.0000	00:30,01/Jan	10.0594	07:30,16/Aug	0.5314		
Chillers load		BCA compliant	Sys load (kW)	0.0000	05:30,01/Jan	36.9766	14:30,11/Jan	1.0023		
Air temperature	Main Bedroom	BCA compliant	Temperature (°C)	16.39	09:30,01/Jul	44.79	15:30.07/Mar	21.10		
Air temperature	Kitchen / Living	BCA compliant	Temperature (*C)	14.32	06:30,16/Aug	28.64	05:30,09/Mar	21.38		

Table A14: Peak thermal loads and internal temperatures BCA house future climate conditioned

Table A15: Internal temperatures BCA house future climate unconditioned

川 Chart(1): F	H1 Chart(1): Fri 01/Jan to Fri 31/Dec - - ×								
Output Analysis Help									
🖬 🚳 🖾 🔚 🖾 🏨 2. Σ 😕 🖻 🙆 🦗 🔛 🙀 🐂 🔛 🔐 🛇 💌 🕷 👯									
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean	
Air temperature	Main Bedroom	BCA compliant	Temperature (°C)	10.15	07:30,16/Aug	46.03	15:30,07/Mar	20.89	
Air temperature	Kitchen / Living	BCA compliant	Temperature (°C)	10.64	07:30,16/Aug	45.93	15:30,07/Mar	20.96	

Table A16: Thermal loads and total system energy BCA house future climate

Σh Chart(1): Fri 01/Jan to Fri 31	/Dec		– 🗆 X							
Output Analysis Help										
!4 🖬 📑 🖄 🖷	🖬 🗃 🖾 🔚 🖾 ዞ! 🏒 ∑ 🐼 🖻 🖉 🕼 🖿 🕊 🗽 🔟 🔾 💌 🕷									
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)							
Dele	DCA annulisation aliante and	DCA annalisation alimata ana	DCA annalisation allocate and							
Date Jan 01-31	BCA compliant future climate.aps 0.0014	BCA compliant future climate.aps 1.7952	BCA compliant future climate.aps 3.5105							
Feb 01-28	0.0000	1.6031	3.1602							
Mar 01-31	0.0220	1.5034	3.3632							
Apr 01-30	0.0934	1.2226	3.1654							
May 01-31	0.4425	0.2359	2.8891							
Jun 01-30	1.0443	0.0789	3.0232							
Jul 01-31	1.1932	0.0531	3.1657							
Aug 01-31	0.9102	0.1319	3.0668							
Sep 01-30	0.5603	0.1230	2.8051							
Oct 01-31	0.2319	0.3397	2.8398							
Nov 01-30	0.1530	0.4276	2.7659							
Dec 01-31	0.0028	1.2654	3.2252							
Summed total	4.6550	8.7798	36.9802							

A4. Banksia house future climate model 1 (increased shading)

Figures A51 and A52 show the Banksia house modified with increased shading (model 1).

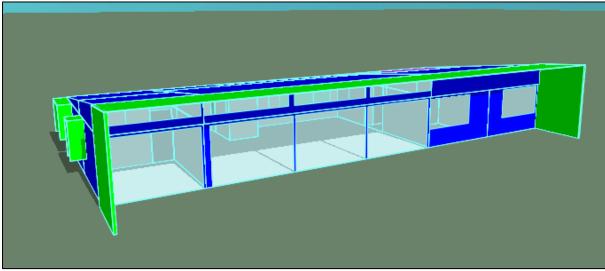


Figure A51: Banksia house model 1 model view

· [• •	•		•	•	•	•		•	•		•	•	•	•	•	·	· ·
									•												
								•	•									•			
														.		,		т			
. –																L					
		•									-			-				-			
								•		•	•	•		•			ŀ	•	•		·
									•												Î.
										•		•	•	•		•	•				
																					.
	I																				Ш
		-			-	-			-												

Figure A52: Banksia house model 1 plan view

Tables A17 – A19 show results of the Banksia house model 1 simulation in the future climate.

Σh Chart(1): Fri 01/Jan to Fri 3	I/Dec		– 🗆 X
Output Analysis Help			
🔲 🎒 🖺 🔀 들 🝏 H!	.2. Σ 🙆 🔯 🖗 🕼 🚍	🛏 📖 🔿 💌 🕷 🐧	
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)
Date	Banksia Model 1.aps	Banksia Model 1.aps	Banksia Model 1.aps
Jan 01-31	0.0000	1.7515	3.4863
Feb 01-28	0.0000	1.5653	3.1399
Mar 01-31	0.0038	0.8193	2.9848
Apr 01-30	0.0281	1.1441	3.0905
May 01-31	0.1588	0.0573	2.6509
Jun 01-30	0.5084	0.0133	2.7200
Jul 01-31	0.5701	0.0016	2.8265
Aug 01-31	0.4926	0.0224	2.7990
Sep 01-30	0.4135	0.0000	2.6654
Oct 01-31	0.1655	0.1681	2.7141
Nov 01-30	0.0683	0.3435	2.6782
Dec 01-31	0.0047	1.1810	3.1807
Summed total	2.4138	7.0674	34.9363

Table A17: Thermal loads and total system energy Banksia house mode 1 future climate

Table A18: Peak thermal loads and internal temperatures Banksia house model 1 future climate conditioned

μ Chart(1): Fr	HI Chart(1): Fri 01/Jan to Fri 31/Dec - - ×										
Output Analys	Output Analysis Help										
🖬 🎒 🖺 🖉	🖩 🚭 🖺 🖄 🔚 🛍 📕 🚣 5 ⊗ 🖻 🙋 🕼 🚍 🖊 🔛 🔐 📀 💌 🕸										
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean			
Air temperature	Main Bedroom	Banksia	Temperature (°C)	16.73	09:30,28/Jun	44.22	15:30,07/Mar	21.58			
Air temperature	Kitchen / Living	Banksia	Temperature (*C)	15.56	06:30,16/Aug	28.38	04:30,19/Dec	21.73			
Boilers load		Banksia	Sys load (kW)	0.0000	00:30,01/Jan	8.5754	07:30,16/Aug	0.2755			
Chillers load		Banksia	Sys load (kW)	0.0000	(23:30,01/Jan	32.0039	16:30,19/Apr	0.8068			

Table A19: Internal temperatures Banksia house model 1 future climate unconditioned

μ! Chart(1): Fr	ri 01/Jan to Fri 31	/Dec					_			
Output Analys	Dutput Analysis Help									
🖬 🎒 🖺	🖩 🚭 🛅 🖄 🔚 🖾 📕 2. Σ 🛞 🖻 🙆 🚾 🚍 🖊 🔛 🔐 📀 🥌 😻									
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean		
Air temperature	Main Bedroom	Banksia I	Temperature (°C)	12.47	08:30,28/Jun	45.70	15:30,07/Mar	21.49		
Air temperature	Kitchen / Living	Banksia I	Temperature (°C)	12.38	07:30,28/Jun	45.71	15:30,07/Mar	21.48		

A5. Banksia house future climate model 2 (decreased glazing)

Figures A53 and A54 show the Banksia house modified with decreased glazing (model 2).

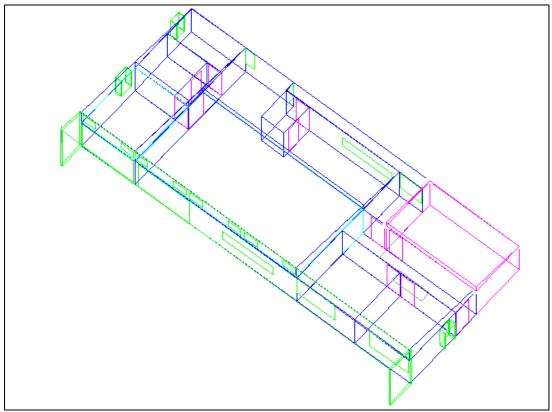


Figure A53: Banksia house model 2 Axonometric view

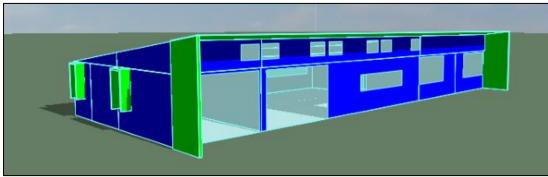


Figure A54: Banksia house model 2 model view

Tables A20 – A23 show the simulation results for Banksia house model 2.

		energy Banksia nouse m											
Σh Chart(1): Fri 01/Jan to I	Fri 31/Dec		- 🗆 X										
Output Analysis Help	Jutput Analysis Help												
🖩 🗃 🖾 🔚 🖾 ዞ! 그 🔽 🔗 🖻 🖉 🕼 🚘 ₩ 🗽 🔟 🔿 💌 🕷 👯													
	P:		de a										
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)										
Date	Banksia Model 2.aps	Banksia Model 2.aps	Banksia Model 2.aps										
Jan 01-31	0.0000	1.4958	3.3483										
Feb 01-28	0.0000	1.4099	3.0560										
Mar 01-31	0.0001	0.9120	3.0331										
Apr 01-30	0.0204	1.0529	3.0374										
May 01-31	0.1933	0.0051	2.6399										
Jun 01-30	0.5921	0.0006	2.7550										
Jul 01-31	0.6770	0.0000	2.8790										
Aug 01-31	0.5055	0.0072	2.7972										
Sep 01-30	0.3236	0.0004	2.6206										
Oct 01-31	0.1635	0.1055	2.6793										
Nov 01-30	0.0746	0.2109	2.6098										
Dec 01-31	0.0000	0.9991	3.0801										
Summed total	2.5501	6.1995	34.5357										

Table A20: Thermal loads and total system energy Banksia house mode 2 future climate

Table A21: Peak thermal loads and internal temperatures Banksia house model 2 future climate conditioned

ዞ! Chart(1): F	#! Chart(1): Fri 01/Jan to Fri 31/Dec - - ×											
Output Analysis Help												
📙 🎒 🖪 🗄	🖬 🚳 🖾 🔚 🖾 🛄 2. Σ 🛞 🖻 🔌 🕼 🚍 🚧 🕍 🖉 💌 🐘											
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean				
Air temperature	Main Bedroom	Banksia Model 2	Temperature (°C)	16.80	09:30,28/Jun	44.28	15:30,07/Mar	21.67				
Air temperature	Kitchen / Living	Banksia Model 2	Temperature (°C)	15.89	06:30,16/Aug	28.19	06:30,26/Jan	21.62				
Boilers load		Banksia Model 2	Sys load (kW)	0.0000	00:30,01/Jan	7.9257	07:30,16/Aug	0.2911				
Chillers load		Banksia Model 2	Sys load (kW)	0.0000	10:30,01/Jan	35.6845	13:30,19/Apr	0.7077				

Table A22: Internal temperatures Banksia house model 2 future climate unconditioned

µ! Chart(1): F	#! Chart(1): Fri 01/Jan to Fri 31/Dec - - ×										
Output Analy	Output Analysis Help										
📙 🎒 🗎 🛛	🖬 🞒 🖾 🔚 🖾 📕 2. Σ 😕 🖻 🗠 🗠 🏣 🖊 🔛 🔐 🛇 💌 🕷 🍇										
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean			
Air temperature	Main Bedroom	Banksia model 2	Temperature (*C)	12.48	08:30,28/Jun	45.80	15:30,07/Mar	21.49			
Air temperature	Kitchen / Living	Banksia model 2	Temperature (°C)	12.48	07:30,28/Jun	45.61	15:30,07/Mar	21.21			

Toble A02, Deculte for th	ha Bankaia hayaa r	model 2 in the ourrent	alimata
Table A23: Results for the	ne dannsia nuuse i	$1100e1 \ge 111 the current$. Cimate.

Σh Chart(1): Fri 01/Jan to Fri 31	/Dec		– 🗆 X
Output Analysis Help			
💾 🗃 🖾 🔚 🚳 📕		🛏 🔟 🔾 💌 🕷 🚸	
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)
 Date	Banksia Model 2 Current	Banksia Model 2 Current	Banksia Model 2 Current
Jan 01-31	0.0011	0.5345	2.8298
Feb 01-28	0.0016	0.2964	2.4556
Mar 01-31	0.1030	0.3360	2.7735
Apr 01-30	0.2816	0.0155	2.6078
May 01-31	0.8682	0.0000	2.9746
Jun 01-30	1.4620	0.0000	3.1896
Jul 01-31	1.4258	0.0000	3.2535
Aug 01-31	1.2466	0.0000	3.1638
Sep 01-30	0.9653	0.0000	2.9412
Oct 01-31	0.6070	0.0000	2.8441
Nov 01-30	0.3190	0.0061	2.6214
Dec 01-31	0.1218	0.0435	2.6249
Summed total	7.4030	1.2321	34.2798

A6. Banksia house future climate model 3 (improved glazing)

Figure A55 shows the modifications to the glazing made for Banksia house model 3.

Project Construction (Glazed: Ex	ternal Wine	dow)										-	
Description: Banksia 8.1 window									I	D: STD_EX	TW	External	Internal
erformance: ASHRAE V													
Net U-value (induding frame): 1.7105 W/m ² ·K U-value (glass only): 1.3173 W/m ² ·K Total shading coefficient: 0.3106 SHGC (center-pane): 0.2702													
Net R-value: 0.7591 m ² K/W g-value (EN 410): 0.2771 Visible light normal transmittance: 0.71													
Surfaces Frame Shading Device RadianceIES													
Outside						Inside							
Emissivity: 0.837	Resi	stance (m²K/W)	0.02	99 🗹 De	efault	Emissivi	ty: 0.83	37	Resistance	(m²K/W):	0.11	198 🗹 De	fault
Construction Layers (Outside to Insi	de):								Sy	stem Materia	ls	Project Ma	terials
Material	Thickness mm	Conductivity W/(m·K)	Angular Dependence	Gas	Convection Coefficient W/m²·K	Resistance m²K/W	Transmittance	Outside Reflectance	Inside Reflectance	Refractive Index	Outside Emissivity	Inside Emissivity	Visible Light Specified
[STD_EXW] Outer Pane	6.0	1.0600	Fresnel	-	-	0.0057	0.300	0.289	0.414	1.526	0.837	0.042	No
Cavity	8.0	-	-	Argon	2.0289	0.4458	-	-	-	-	-	-	-
[STD_INW1] Inner Pane	6.0	1.0600	Fresnel	-	-	0.0057	0.747	0.072	0.072	1.526	0.837	0.837	No
Cavity	8.0	-	-	Air	3.1200	0.1466	-	-	-	-	-	-	-
[STD_INW] Inner Pane	6.0	1.0600	Fresnel	-	-	0.0057	0.783	0.072	0.072	1.526	0.837	0.837	No

Figure A55: Modified glazing details Banksia house model 3

Tables A24 – A26 show the simulation results for Banksia house model 3.

Σh Chart(1): Fri 01/Jan to Fri 31	/Dec		– 🗆 X								
Output Analysis Help											
📙 🗃 🛅 🔀 🧮 🕼 Hi	a 🚳 🖻 🖂 🏣 🖾 🏨 2. ∑ 😕 🖻 🔍 🗠 🖿 🖬 🔟 🔾 💌 🗷 🦉										
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)								
Date	Banksia Model 3.aps	Banksia Model 3.aps	Banksia Model 3.aps								
Jan 01-31	0.0000	1.4058	3.2997								
Feb 01-28	0.0000	1.3559	3.0269								
Mar 01-31	0.0024	0.8198	2.9845								
Apr 01-30	0.0409	0.9591	2.9970								
May 01-31	0.2852	0.0009	2.6836								
Jun 01-30	0.7456	0.0000	2.8314								
Jul 01-31	0.8604	0.0000	2.9708								
Aug 01-31	0.6534	0.0018	2.8682								
Sep 01-30	0.4420	0.0000	2.6796								
Oct 01-31	0.2170	0.0726	2.6882								
Nov 01-30	0.1026	0.1584	2.5954								
Dec 01-31	0.0000	0.8974	3.0251								
Summed total	3.3495	5.6717	34.6504								

Table A25: Peak thermal loads and internal temperatures Banksia house model 3 future climate conditioned

									\times
Output Analy	Output Analysis Help								
🖬 🚳 🖾 📙 🖾 📙 2. Σ 😕 🖻 🔺 🔛 🦊 🔛 👪 🗞									
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean	
Air temperature	Main Bedroom	Banksia Model 3.	Temperature (°C)	16.73	09:30,28/Jun	44.22	15:30,07/Mar	21.13	
Air temperature	Kitchen / Living	Banksia Model 3.	Temperature (°C)	15.61	06:30,16/Aug	28.37	06:30,26/Jan	21.42	
Boilers load		Banksia Model 3.	Sys load (kW)	0.0000	00:30,01/Jan	8.4300	07:30,16/Aug	0.3824	
Chillers load		Banksia Model 3.	Sys load (kW)	0.0000	07:30,01/Jan	33.6782	16:30,19/Apr	0.6475	

Table A26: Internal temperatures Banksia house model 3 future climate unconditioned

H Chart(1): F	μ! Chart(1): Fri 01/Jan to Fri 31/Dec – □ ×								
Output Analy	Output Analysis Help								
🖩 🚭 🖻 🖂 🔚 🖆 💾 2. Σ 🛞 🖻 🙆 🕼 🐂 🖬 🖬 🛇 💌 🕷 🗞									
Var. Name	Var. Name Location Filename Type Min. Val. Min. Time Max. Val. Max. Time Mean								
Air temperature	Main Bedroom	Model 3FF.aps	Temperature (°C)	11.95	08:30,28/Jun	45.71	15:30,07/Mar	20.78	
Air temperature	Kitchen / Living	Model 3FF.aps	Temperature (°C)	11.89	07:30,28/Jun	45.72	15:30,07/Mar	20.80	

A7. Banksia house combined future climate modifications

Figure A56 and A57 shows the Banksia house with combined modifications.

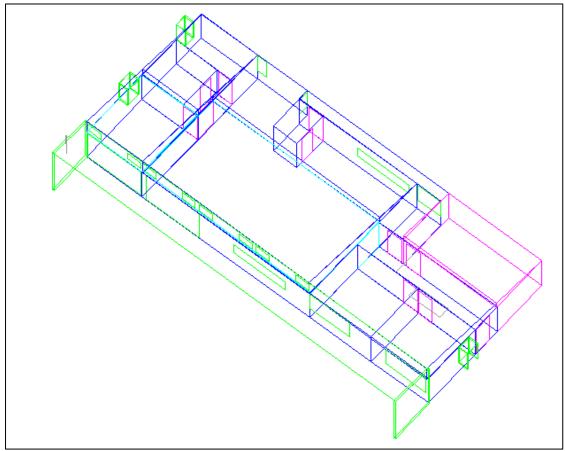


Figure A56: Banksia house combined modifications axonometric view

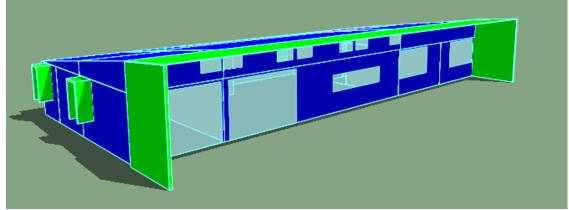


Figure A57: Banksia house combined modifications model view

Tables A27 – A30 show the simulation results for Banksia house with the combined changes.

Σh Chart(1): Fri 01/Jan to Fri 31/Dec – □ ×									
Output Analysis Help									
🖬 🚳 🖻 🗵 🔚 🖾 ዞ! 🔔 🖸 🥙 🖻 🔌 🕼 🚘 ⊭ 🔛 🔐 🛇 💌 🕷 💸									
	Boilers load (MWh)	Chillers load (MWh)	Total system energy (MWh)						
Date	Banksia combined	Banksia combined	Banksia combined						
Jan 01-31	0.0000	1.1843	3.1801						
Feb 01-28	0.0000	1.2141	2.9503						
Mar 01-31	0.0070	0.5251	2.8276						
Apr 01-30	0.0862	0.5204	2.7827						
May 01-31	0.4058	0.0000	2.7434						
Jun 01-30	0.8698	0.0000	2.8935						
Jul 01-31	1.0105	0.0000	3.0458						
Aug 01-31	0.8175	0.0000	2.9493						
Sep 01-30	0.6393	0.0000	2.7782						
Oct 01-31	0.2651	0.0096	2.6783						
Nov 01-30	0.1104	0.0864	2.5605						
Dec 01-31	0.0000	0.7353	2.9376						
Summed total	4.2116	4.2752	34.3273						

Table A27: Thermal loads and total system energy Banksia house combined changes future climate

Table A28: Peak thermal loads and internal temperatures Banksia house combined changes future climate conditioned

HI Chart(1): Fr	#! Chart(1): Fri 01/Jan to Fri 31/Dec — …								
Output Analys	Output Analysis Help								
🖬 🕭 🛍 🖞	🖬 🚇 🖾 🔚 🖾 📕 2. Σ 🛞 🖻 🖉 🥼 🔚 ₩ 🔛 🕛 🦉 🕷 🗞								
Var. Name	Location	Filename	Туре	Min. Val.	Min. Time	Max. Val.	Max. Time	Mean	
Air temperature	Main Bedroom	Banksia combined	Temperature (°C)	16.74	09:30,28/Jun	44.16	15:30,07/Mar	20.77	
Air temperature	Kitchen / Living	Banksia combined	Temperature (°C)	15.90	06:30,16/Aug	28.18	06:30,26/Jan	21.17	
Boilers load		Banksia combined	Sys load (kW)	0.0000	00:30,01/Jan	7.9304	07:30,16/Aug	0.4808	
Chillers load		Banksia combined	Sys load (kW)	0.0000	07:30,01/Jan	26.7610	07:30,24/Feb	0.4880	

Table A29: Internal temperatures Banksia house combined changes future climate unconditioned

HI Chart(1): Fri	#! Chart(1): Fri 01/Jan to Fri 31/Dec - - ×									
Output Analysis Help										
🖬 🚭 🖻 🔟 🛄 🤽 Σ 🚱 🖻 🖉 🦗 🔤 🗮 🖬 🖬 🖉										
Var. Name	Var. Name Location Filename Type Min. Val. Min. Time Max. Val. Max. Time Mean									
Air temperature	Main Bedroom	Banksia Combined	Temperature (°C)	11.87	08:30,28/Jun	45.73	15:30,07/Mar	20.12		
Air temperature	Kitchen / Living .	Banksia Combined	Temperature (°C)	11.94	07:30,28/Jun	45.56	15:30,07/Mar	20.10		

Table A30: Thermal loads and total system energy Banksia house combined changes current climate

	•	0,	-						
Σh Chart(1): Fri 01/Jan to Fri 31	- 🗆 X								
Output Analysis Help									
🖬 🗃 🔯 🔚 🖾 #! 🔔 🖸 🥝 🖻 🙋 k 🚘 Ħ 🔛 🔐 🛇 💌 🕷 👯									
	Chillers load (MWh)	Boilers load (MWh)	Total system energy (MWh)						
Date	Banksia combined current.aps	Banksia combined current.aps	Banksia combined current.aps						
Jan 01-31	0.2663	0.0084	2.6885						
Feb 01-28	0.1466	0.0121	2.3799						
Mar 01-31	0.1269	0.2530	2.7356						
Apr 01-30	0.0000	0.5561	2.7366						
May 01-31	0.0000	1.1517	3.1164						
Jun 01-30	0.0000	1.6618	3.2895						
Jul 01-31	0.0000	1.7337	3.4074						
Aug 01-31	0.0000	1.5569	3.3190						
Sep 01-30	0.0000	1.3677	3.1425						
Oct 01-31	0.0000	0.8650	2.9731						
Nov 01-30	0.0000	0.5288	2.7230						
Dec 01-31	0.0016	0.2454	2.6641						
Summed total	0.5414	9.9408	35.1757						