Condensation risks in bulk insulation in hot and mixed climates

Trevor Lee, Affil.AIRAH, Exemplary Energy Partners, Canberra
in collaboration with
Dr Peter Lyons, Fenestralia, Canberra
Dr Mark Dewsbury, University of Tasmania, Launceston
Acknowledgements

• The research presented here shows some interim insights into a project entitled “Bulk insulation in hot and mixed climates” being undertaken for ICANZ http://icanz.org.au

• Our research and simulation team includes:
 – Exemplary Energy
 Chun Yin Wu, Zhongran (Talent) Deng
 – University of Tasmania
 Thomas Chandler, Johann Potgieter and Abdel Soudan

• Specialised climate data is supplied by our Bureau of Meteorology, selected and formatted by Exemplary Energy www.exemplary.com.au
Presentation Outline

• Methodology and Problems Encountered
• Climate analysis
• Component analysis
• Component simulation – THERM
• Component simulation – JPA and WUFI
• Conclusions and Progress
• Questions
Methodology and Problems Encountered

• Variations between AS and ISO Standards and industry practice
• Software limitations for simulations (e.g. assumption of still, trapped air in all voids when cavities are often well ventilated)
• Climate data with unhelpful units of humidity measurement (e.g. Relative Humidity in % and Absolute Moisture Content in g/kg dry air)
• Uncertainties and imprecisions in long term measurement of humidity; generally as Wet Bulb Temperature unadjusted for measured wind speed
• Internal temperatures for Regulation purposes and actual values in practice
Climate Analysis

• The research covers three specific climates
 – Darwin (hot humid monsoonal)
 – Brisbane (subtropical, coastal)
 – Eastern Sydney (warm temperate, coastal)

• Climate files selected were RMY-C

• RMY = Reference Meteorological Year

• C = indicative months selected with a strong weighting for temperature and humidity (over solar and wind speed)
Climate Analysis

Eastern Sydney (warm temperate, coastal)

- Used RMY-C climate file but could use immediate past weather data
- Real Time Years (RTYs) to end of last month
- RTYs for Sydney (Macquarie University or CBD) and associated Weather and Energy Index published monthly by Exemplary Energy

Climate Analysis - Eastern Sydney

Summer week around the hottest day
Climate Analysis - Eastern Sydney

Winter week around the coldest morning
Climate Analysis - Internal

• Internal conditions are indicated in the National Construction Code (NCC) and mandatory for compliance simulations
 — Residential – NatHERS (www.nathers.gov.au)
 — Section J – JV3 Energy Verification
 NCC Section J - Verification Methods JV3 (d)(i)(D)

• Actual internal conditions vary widely with occupant and management preferences
Climate Analysis - Internal

• Darwin (hot humid monsoonal)
 – NatHERS - Heating: 20.0°C, Cooling: 26.5°C
 – NCC - Heating: 18.0°C, Cooling: 26.0°C

• Brisbane (subtropical, coastal)
 – NatHERS - Heating: 20.0°C, Cooling: 25.5°C
 – NCC - Heating: 18.0°C, Cooling: 26.0°C

• Eastern Sydney (warm temperate, coastal)
 – NatHERS - Heating: 20.0°C, Cooling: 24.5°C
 – NCC - Heating: 18.0°C, Cooling: 26.0°C
Component analysis

• **Australian Standards**
 – AS/NZS 4859.1:2002 - Materials for the thermal insulation of buildings - Part 1: General criteria and technical provisions

• **International Standards**
 – ISO 6946:2007, Building components and building elements - Thermal resistance and thermal transmittance - Calculation method
 – ISO 10211 (2), Thermal bridges in building construction — Heat flows and surface temperatures — Detailed calculations
 – ISO 14683 (4), Thermal bridges in building construction — Linear thermal transmittance — Simplified methods and default values
 – ISO 15242:2007 - Ventilation for buildings - Calculation methods for the determination of air flow rates in buildings including infiltration
Component simulation – THERM

What is THERM?
- thermal modelling software for walls, roofs, window frames...in fact anything solid, plus entrapped gases such as air
- Public domain, free, developed and supported by Lawrence Berkeley National Laboratory, University of California
- At the heart of 10 million window energy ratings in USA, Canada, Australia and many other countries
- windows.lbl.gov/software
Modelling walls and roofs with THERM 7.4.3

THERM capabilities:
- 2-D heat transfer calculation using ‘finite element’ method
- Calculate overall R-values, U-values, surface and interstitial temperatures and temperature gradients, condensation risk (provided dew point of the air is known separately)
- One layer or many
- Conduction, convection and radiation
- Computational algorithms are compliant with ISO 15099:2003 (international heat transfer standard)
Modelling walls and roofs with THERM 7.4.3

THERM limitations:
- Steady state analysis, *i.e.* a snapshot in time (not dynamic) and not accounting for thermal mass effects
- Does not evaluate moisture transfer
- Does not calculate wind-driven or fan-forced air flows
- But *does* calculate buoyancy-driven air movement and circulation caused by temperature differences
Modelling walls and roofs with *THERM 7.4.3*

However...

- THERM *can* be used in situations of wind-driven or thermally forced air flow *IF* those characteristics are known and can be pre-calculated and input to THERM as ‘special’ boundary conditions.
Component simulation – JPA

- JPA Designer SAP 2012 (9.92) www.techlit.co.uk
- Like THERM, Steady State is assumed; but
- Water vapour transmission and condensation is accounted for; and
- The analysis can include thermal bridging.
Component simulation – JPA
Component simulation – JPA

In real buildings, short term transient effects are significant and need to be accounted for.
Component simulation – WUFI

- Considers transient and seasonal effects; but
- It is also 1-Dimensional; but
- It has a high-end 2 Dimensional option.
Component simulation – Ideal

The ideal software will account for:

- Roof Spaces and Envelope Components;
- Northern Spaces and Envelope Components;
- Eastern Spaces and Envelope Components;
- Western Spaces and Envelope Components;
- Southern Spaces and Envelope Components;
- Façade Systems;
- Passive Ventilation Systems; and
- Passive and wind-driven aspiration of air spaces within Components (e.g. the cavity in brick veneer construction).
Conclusions and Progress

• Analysing condensation risks in bulk insulation in hot and mixed climates on a theoretical basis has its challenges.

• Studying moisture and condensation issues in buildings by simulation alone has its limitations; but we anticipate overcoming them as a part of this study.
Questions

• Trevor Lee, Affil.AIRAH, trevor.lee@example.com.au
 Exemplary Energy Partners, Canberra
• Dr Peter Lyons, peter.lyons@fenestralia.com
 Fenestralia, Canberra
• Dr Mark Dewsbury, mark.dewsbury@utas.edu.au
 University of Tasmania, Launceston

• ICANZ, dennisd@icanz.org.au
 Insulation Council of Australia and New Zealand